<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision & Mission</td>
<td>4</td>
</tr>
<tr>
<td>Masterplan Goals</td>
<td>6</td>
</tr>
<tr>
<td>General Summary</td>
<td>8</td>
</tr>
<tr>
<td>Campus Signage</td>
<td>10</td>
</tr>
<tr>
<td>Walla Walla Campus</td>
<td>14</td>
</tr>
<tr>
<td>General Description</td>
<td></td>
</tr>
<tr>
<td>Guiding Principles</td>
<td></td>
</tr>
<tr>
<td>Campus Masterplan</td>
<td></td>
</tr>
<tr>
<td>Vehicular Circulation</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Circulation</td>
<td></td>
</tr>
<tr>
<td>Campus Expansion</td>
<td></td>
</tr>
<tr>
<td>View Corridors</td>
<td></td>
</tr>
<tr>
<td>Site Amenities</td>
<td></td>
</tr>
<tr>
<td>Outdoor Recreation</td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td></td>
</tr>
<tr>
<td>Water Drainage</td>
<td></td>
</tr>
<tr>
<td>Utility Provisions</td>
<td></td>
</tr>
<tr>
<td>Improvements Summary</td>
<td></td>
</tr>
<tr>
<td>Clarkston Campus</td>
<td>48</td>
</tr>
<tr>
<td>General Description</td>
<td></td>
</tr>
<tr>
<td>Guiding Principles</td>
<td></td>
</tr>
<tr>
<td>Campus Masterplan</td>
<td></td>
</tr>
<tr>
<td>Vehicular Circulation</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Circulation</td>
<td></td>
</tr>
<tr>
<td>Campus Expansion</td>
<td></td>
</tr>
<tr>
<td>View Corridors</td>
<td></td>
</tr>
<tr>
<td>Site Amenities</td>
<td></td>
</tr>
<tr>
<td>Outdoor Recreation</td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td></td>
</tr>
<tr>
<td>Water Drainage</td>
<td></td>
</tr>
<tr>
<td>Utility Provisions</td>
<td></td>
</tr>
<tr>
<td>Improvements Summary</td>
<td></td>
</tr>
<tr>
<td>Building Inventory</td>
<td>80</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>122</td>
</tr>
</tbody>
</table>
The following vision, mission and goals were expressed in the recent 2013 Walla Walla Community College Strategic Plan Update:

VISION
Walla Walla Community College will be the catalyst that transforms our students’ lives and the communities we serve.

MISSION
Walla Walla Community College inspires all students to discover their potential and achieve their goals by providing relevant, equitable, and innovative learning opportunities and services.

VALUES
Learning opportunities, integrity, sense of community, teamwork, diversity, innovation, health and humor, personal and professional growth, excellence, sustainability.

CORE THEMES
Student Success, Strengthen Community, Resource Stewardship

OVERARCHING STRATEGIES
1 Improve student access and opportunity, progression, and attainment
2 Improve strategic enrollment and retention management
3 Expand partnerships
4 Cultivate equity
5 Financial adequacy
6 Organizational development
7 Close skills gap/Ensure alignment between programs and occupational demand

TACTICAL INITIATIVES
1 Student Success Initiatives
 • Achieving the Dream
 • S.T.E.M. (facilities and programming)
 • Articulate and Align K – 20 Pathways
 • Increase Baccalaureate Educational Opportunities for Place-Bound Residents
 • Student Housing

2 Strengthen Community Initiatives (Internal)
 • Grow, Attract, and Retain Talent
 • Achieving the Dream
 • Wellness
 • Equity

3 Strengthen Community Initiatives (External)
 • New Programs/Close Skills Gap
 • Economic Development/Innovation Partnership Zone
 • Establish Center for Rural Entrepreneurship
 • Wellness/Mental Health
 • Corrections Education

4 Resource Stewardship
 • Financial Adequacy/Audits with no findings
 • Increase Financial Aid/Scholarship Opportunities for Students
 • Increase Grant Writing Capacity
 • Establish Renewable Energy Park
 • Regional Water Stewardship (see Sustainability Plan)
 • Reduce Carbon Emissions
The same vision, mission, and goals for the Walla Walla Campus hold true for Clarkston. Below are overarching strategies and tactical initiatives for the Clarkston Campus.

OVERARCHING STRATEGIES

1. Achieving the Dream
2. Articulate and Align K – 20 Pathways
3. Increase Educational Attainment Rate of LC Valley
4. Increase Capacity: Program and Facilities
5. Improve upon Alignment between Programs and Regional Economy

TACTICAL INITIATIVES

1. Establish Workforce and Business Development Center
2. Increase space capacity to establish and deliver new programs that will enhance educational attainment and close the skills gap.
 - Industrial Maintenance Program
 - Manufacturing Technician
 - Welding
 - Mechatronics
This master plan seeks to identify and promote a direction for future development that will attract new students and faculty, foster new educational opportunities and collaborative partnerships, and promote growth for Walla Walla Community College on each of the campuses in Walla Walla and Clarkston.

During the master planning process, several guiding principles emerged to influence the final plan. As these were evaluated, goals for each campus were developed to guide decisions about future growth, campus character and environmental leadership.

As this institution evolves, the past, present, and future needs must be continuously assessed and supported in adopting and creating a lasting Walla Walla Community College Campus. The campus environment must bolster the College’s vision, mission, values and strategic plan while maintaining flexibility for future development that enhances the ongoing success of the Institution.

masterplan goals

1. Create a facilities master plan update that supports and enables the College’s strategic goals.
2. Provide premier, state of the art facilities for increased demand in Science, Technology, Engineering and Math (STEM) fields.
3. Provide facilities for workforce education program development.
4. Provide facilities for entrepreneurship and hospitality to help drive regional economic development.
5. Plan for space that accommodates enrollment growth.
6. Plan physical arrangements and adjacencies that foster interdisciplinary collaboration and chance encounters.
7. Develop an open space network that enhances the College’s sense of place and links with the natural surrounding Walla Walla and Clarkston.
8. Create an environment that focuses on the pedestrian.
9. Develop a transportation, access and parking strategy.
10. Create an exemplary sustainable campus that teaches about sustainability as well as being a community leader and role model.
Right: The current aerial imagery of both the Walla Walla Campus and the Clarkston Campus including all existing structures, parking, and amenities.
masterplan process

Preparation of this Master Plan began with an assessment of the existing buildings and infrastructure on the Walla Walla and Clarkston Campuses. This assessment utilized existing documents such as the 2005 Master Plan prepared by Jim Stenkamp and the 2013 Facilities Condition Survey prepared by Steve Lewandowsky on behalf of the State Board of Community and Technical Colleges (SBCTC). The ALSC team toured all WWCC buildings and prepared updated Facilities Conditions Reports as well as suggested improvements. The updated Facilities Condition Report is found in the Building Inventory portion of this Master Plan.

Recommendation in the plans come from review of the 2005 Master Plan document and visioning/work sessions held with the WWCC President, Vice Presidents, and Deans. Work Sessions were also held with the College Counsel and Board of Trustees.
Walla Walla Community College has rapidly grown from 850 students in 1967 to a present annual enrollment of over 13,000. Beautifully located on approximately 100 acres, the Walla Walla campus has become an educational and cultural center for Southeastern Washington. Extending its facilities and programs throughout its four-county service district, Walla Walla Community College’s Clarkston Center, located in Clarkston, Washington, is the hub of educational activity in Asotin and Garfield counties. WWCC also maintains a facility at the Washington State Penitentiary.

The Walla Walla Community College exhibits an interesting history with a wide range of building types, sizes, and configurations. Unlike other colleges and universities, the Walla Walla and Clarkston Campuses have not been limited by a predetermined building style or arrangement. This can be a positive development, if certain challenges are met.

These challenges include the site development and the infrastructure needed to create harmony among individual structures. Defining and enhancing vehicular and pedestrian circulations, landscaping, irrigation, storm water drainage, signage, and recreation, as well as site amenities to create a cohesive and sustainable environment, is a goal worth pursuing. The suggestions mentioned in each of these sections will provide a road map for the desired future improvements. Likewise, information contained within the individual building descriptions and suggestions for improvement will provide sufficient guidelines for each building.

It is important to recognize the need for a more efficient and ecologically sustainable use and care of water resources. The Center for Water & Environmental Studies has established a high threshold to be met for water conservation and management. This project has become the genesis for a new way of thinking about water and the environment. These sustainability principles will be implemented in the design of future buildings.

Included in this report are drawings showing the potential future building locations, parking areas, vehicular and pedestrian circulation and landscaping for both campuses. Each planning option is a result of a collaborative effort of Community College staff and administration, public officials, and ALSC Architects. The final report options are a result of many planning meetings to discuss both existing conditions and the College’s missions and goals. This report includes a list of improvements prioritized over a period of 10 years (more immediate needs) and 20 years (to recognize long term goals).

The recommendations found in this plan represent the understanding of WWCC needs and priorities at the time it was prepared. It should be viewed as a living document and, as time passes, its recommendations must be evaluated in the context of the current state of the College and the conditions in which it operates.
Due to the complexity of the building arrangements on the Walla Walla Community College Campus, there is a need for well organized signage appropriate for both pedestrians and drivers. Walla Walla Campus signage issues are as follows:

SIGNAGE FUNCTION

The signage system needs to be very successful in informing the readers about location, designation, direction, and special events. They must also be sized for the respective use. For example, signs read while driving (for direction or orientation) must be large and simple so that a driver will have enough time to read them. They must also be placed in the right spot so the reader can have time to make a decision. Signs read by pedestrians can be smaller and contain more information because the reader has time to pause in their activity. The signage should also be adaptable so as changes are made to the campus, the signs can be changed as well. Signs also have the ability to connect the campus buildings together with a common identity. Color, shape, style, and position should all be considered and made as consistent as possible.

CAMPUS ENTRY SIGNAGE

Presently, there are entry signs at the Tausick Way entry, as well as at the Isaacs Avenue entry. They are, however, of very different character. The sign at Tausick is what could be considered a primary campus sign, while the one on Isaacs is more of a traffic sign. Campus entry signs should be prominent and harmonious with the landscaping and building character. A new sign on Isaacs is desirable and should be consistent with the one on Tausick.

TRAFFIC CONTROL SIGNAGE

These signs include “One Way”, “Entry Only”, “Service Vehicles Only”, and speed limit signs. Signage needs to be placed in areas to promote safety and security on an as needed basis. Their design and configuration needs to follow standard State of Washington traffic control guidelines.

TRAFFIC DIRECTIONAL SIGNAGE

There is a need for vehicular directional signs in a few areas on campus. Simple directional signs would be desirable near the turn to the main parking lot, as well as at the intersection of the main road with the access road to Isaacs. These signs should indicate the direction to various curricular programs, such as "PROFESSIONAL TECHNICAL", or perhaps in some cases specific building names such as "DIETRICH ACTIVITY CENTER". The signage should remain simple and direct so that a driver can quickly decide on their course of action.

BUILDING DESIGNATION SIGNAGE

The exterior building signs should announce the name of the building (or building use) clearly and completely. The existing signs perform this task with varying degrees of success. The main building sign suffers in this way, while the Dietrich Activity Center sign does its job quite well. The opportunity exists to take the best of the existing building signs and pattern the others after them. This would help to tie the buildings together throughout the campus with common design principles.

<table>
<thead>
<tr>
<th>signage types:</th>
<th>Campus Entry</th>
<th>Traffic Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Exterior Signage:</td>
<td>Traffic Directional</td>
<td>Building Designation</td>
</tr>
<tr>
<td>B Interior Signage:</td>
<td>Pedestrian Directional</td>
<td>Announcement or Event</td>
</tr>
<tr>
<td></td>
<td>Directional</td>
<td>Departmental</td>
</tr>
<tr>
<td></td>
<td>Room Designation</td>
<td>Announcement or Event</td>
</tr>
</tbody>
</table>
Left: Current building signage
Below Left: Campus entry signage should be striking from a distance and interactive up close. Middle: Traffic directional and parking signage may have integrated lighting and should be a marker to enhance campus security. Below: Other campus signage may call attention to the natural elements that occur within the campus district and could be fashioned out of more natural materials.
PEDESTRIAN DIRECTIONAL SIGNAGE

These signs are typically located on pathways to assist in orientation. Signs should be strategically located in places where a considerable number of students and visitors circulate. These could be readily identified in kiosks which also create informal gathering places. Enough room is needed around these signs so several people can read them at the same time.

The most important criteria for directional signs is legibility. The directional sign in front of the main building has lost this attribute. Its position at the end of the main parking drive suggests that it was intended for visibility to drivers, however, the size of the type makes this difficult. If it were intended for use by pedestrians, it unfortunately places the reader somewhat in harms way at the end of the drive. This sign has also failed in keeping up with the changing campus. Both the position and character of this sign must be reconsidered.

ANNOUNCEMENT OR EVENT SIGNAGE

These signs act like reader boards and would need to be placed in areas where considerable numbers of people would likely view them. They are often associated with sporting events, but could also be used for other performances or activities. Consideration should be given to new event signage for the campus.

Below: Directional signage inserted into paving system provides additional information without overwhelming the landscape with monument signs.
Below Middle: Creative solutions to interior building signs include innovation in materiality as well as inserting supergraphics in certain locations to aid in wayfinding.
Below Right: Individual room signs can be more striking than the traditional applique.
suggested improvements

1. Perform a complete review of existing campus signage location and usage.

2. Installation of exterior building signs on campus has begun to establish a consistent signage language across campus. Continue effort to update all buildings.

3. Monument signage on Isaacs Avenue near the intersection with Tausick Way.

4. Provide vehicular wayfinding critical intersections and parking entries.

5. Improve pedestrian orientation and wayfinding of campus building interiors.

6. Provide a better pedestrian orientation and directional kiosk or sign at the main building entry and perhaps near the entry to the Professional Technical Center.

7. Due to the growth in Hispanic student numbers, it would be appropriate for some of the campus building signage to be in Spanish as well as English.
The Walla Walla Community College - Walla Walla Campus is an arrangement of independent buildings and open spaces that occupies an area over 100 acres. The campus extends from Tausick Way on the west to a property boundary line east of the agricultural buildings and from Isaacs Avenue on the north to Mill Creek on the south. The campus plan is somewhat complex due to active growth over the last 30+ years and its location adjacent to waterways and natural areas.

HISTORY
The first building to be constructed was a portion of the main building, built in 1974. Accompanying this structure was a wedge of the current main parking lot. This parking lot was extended as later buildings, such as those transported from the 1974 World’s Fair in 1976, were added. Each addition was based upon community education and training needs. Initially, additional buildings were positioned relatively close to the main structure. The buildings currently used for agricultural training were placed farther away from the main building to better accommodate the equipment and vehicular needs. Titus Creek became a boundary which separated the main building complex from the agricultural structures and the area to the south. The addition of the Water Center east of Titus Creek became a catalyst for restoring the riparian landscape in the area.

CAMPUS IDENTITY
Due to the incremental development and varied nature of the structures which make up the campus, it is difficult to categorize campus identity. The campus is composed of unique building configurations, sizes, shapes and types of construction with varying degrees of similarities. The similarities which help to bind the campus together include color, proximity and, to a lesser extent, construction materials. The elements which tend to disassociate the buildings include the following:

A Proximity: A few buildings are located a considerable distance apart without the benefit of a strong pedestrian connection.

B Orientation: A few buildings are oriented to Isaacs Avenue and, to a certain extent, turn their backs to the main campus.

C Attention: A few of the buildings receive more attention than others. This includes landscaping, access, visibility and maintenance.

D Accommodation: A few of the buildings have better access to paved parking and pathways than others.

Improvements in these four areas would greatly affect the overall image of the campus.

FACILITY LAYOUT
The campus is presently composed primarily of five major development zones:

A Campus loop buildings.

B Entrepreneurship and hospitality buildings along Isaacs Avenue – community outreach.

C Recreation and sports associated facilities to the west.

D Environmental Resource and Agricultural related facilities to the east.

E Undeveloped areas to the southeast.

The Main Building Complex is the most developed zone. The origin of the campus is here, along with the greatest portion of classrooms and other teaching facilities. Circulation is well defined and associated facilities are in close proximity. The main parking lot is oriented completely to these buildings.
Any development that occurs along Isaacs Avenue has the highest degree of visibility. It is perhaps for this reason that the most recent development has taken place here in the areas of entrepreneurship and hospitality. Development in this area has the distinct advantage of being highly visible, but is more difficult to connect to the Main Campus Complex by means of pedestrian pathways.

The recreation and sports associated zone contains all of the organized sports activities as well as unorganized activity. It has the fewest structures and the most loosely defined circulation. Adjacency to parking has been low priority.

The Environmental Resource and Agricultural related zone includes the Water Center and agricultural buildings and Greenhouse. These structures are tucked away from the main entry drive and are distinctly separate from the Main Building Complex. To some degree, these facilities suffer from their lack of visibility.

The southeast area of the existing campus appears to be the forgotten corner. This area has remained unorganized and undeveloped. It also happens to be the most visible area from the bike path along Mill Creek. The unfortunate (and unintentional) result is that it appears that the campus turns its back on Mill Creek. This area could truly use some attention.

SUMMARY

It is important to create a sense of identity and unity among the campus buildings and certain improvements should be pursued to attain this. These improvements could mesh quite well with other, more pragmatic, concerns which will be discussed in other Site Consideration sections.
design principles

1. Embrace & Preserve Natural Landscapes
2. Connect to Titus Creek
3. Preserve Central Parking & Distribute Future Parking
4. Future Campus Buildings to Front Campus Drive
5. Entrepreneurial / Community Outreach Buildings Face Isaac’s Avenue
6. Main Building Stays Campus Center
7. “Greening” Overall Campus
8. Sustainable Site Design
9. Encourage Healthy Behavior
10. Stay Current with Changing Technology
11. Maintain Existing Campus Entry

site & contextual principles

1. View Corridors
2. Open Space
3. Titus Creek & Mill Creek
4. Public Streets
5. Iconic Buildings
6. Main Campus Entry Location
7. Campus Vehicle Circulation

campus loop buildings

- 200A: Dietrich Activity Center
- 200B: Parent-Child Center
- 200C: Women’s Center
- 200D: Main Building
- 200E: Health Science & Performing Arts
- 200F: Technology Center
- 200G: China Pavilion
- 200H: Facilities
- 200J: Vocational / Technical Building

water center buildings

- 200K: First Flight Day Care
- 200L: Agricultural Mechanics 1
- 200M: Agricultural Mechanics 2
- 200N: Farrier / Grounds Maintenance
- 200P: Applied Technology Training Center
- 200Q: Greenhouse
- 200R: Water & Environmental Center

east isaac buildings

- 200S: Pottery Building
- 200T: Center for Enology & Viticulture
- 200U: Auto Training Center
- 200W: The Skills Center

Right: The current aerial of the Walla Walla Campus including all existing structures, parking, and amenities. Reference the key above for building locations and additional information.
1. **Embrace & Preserve Natural Landscapes**
 One of the unique features of the WWCC Campus is the presence of Titus Creek and its riparian landscape as well as Mill Creek. Future development should take advantage of these assets as well as maintaining views to the Blue Mountains.

2. **Connect to Titus Creek**
 Future buildings and pathways that provide visual links to Titus Creek and its natural riparian landscape will help it become a stronger part of the campus experience and WWCC’s identity.

3. **Preserve Central Parking & Distribute Future Parking**
 The existing fan shaped parking is an iconic element of the campus. It was determined that it should remain with landscaping and safe pedestrian pathways added. Future parking lots should be dispersed in and around campus buildings and their presence obscured by landscaping.

4. **Future Campus Buildings to Front Campus Drive**
 Campus Drive is envisioned as the spline that links the campus buildings together. Extending Campus Drive to the east will provide a better connection to the John Deere Center and the Water Center as well as making them easier to find by first time visitors. Future buildings should have entries that are visible from Campus Drive.

5. **Entrepreneurial / Community Outreach Buildings Face Isaac’s Avenue**
 With the locations of the Center for Enology & Viticulture, Auto Training Center and the Technology Skill Center, Isaac’s has become the public face of the campus. Future buildings that serve programs such as hospitality and the Entrepreneurial Center and others that have a community outreach component should also face Isaac’s Avenue. This will make them easy to find for potential users/customers.

6. **Main Building Stays Campus Center**
 As the campus grows, some functions currently housed in the Main Building will need to move out. It is recommended that Administration and Student Services
such as financial aid, the bookstore, cafeteria and library remain in the building. These functions can expand in the building over time as academic classrooms move out. This will help retain the building’s role as the campus center.

7 **“Greening” Overall Campus**
The current campus does not have a consistent level of landscaping throughout. The college should seek opportunities to add landscaping along roadways, pedestrian pathways and in parking lots.

8 **Sustainable Site Design**
As the campus is developed and grows, sustainable site concepts should be implemented. These include, but are not limited to shading asphalt with trees, controlling light pollution, training storm water run-off utilizing native plants for landscaping and preserving open space.

9 **Encourage Healthy Behavior**
The WWCC Strategic Plan lists wellness as a strategy. Campus planning can affect this goal by providing safe, pleasant and convenient pedestrian pathways throughout. When done well, this will encourage walking over driving as a means to get around the campus.

10 **Stay Current with Changing Technology**
New opportunities to use technology for improved delivery of quality education are constantly emerging. All future campus development and growth should provide the flexibility to include these technologies as they become available.

11 **Maintain Existing Campus Entry**
The existing campus entry off Tausk Way was determined to be the optimum location for the formal entry to the campus. The area around the entry should be preserved for this function. It should be kept free of structures and enhanced landscaping and improved campus identity signage should be considered in the near future.
There are numerous influences that may impact or direct a campus over time, highlighting the importance to updating this Master Plan. The illustrative plan indicates the proposed locations for elements of the plan. Each is sited to extend and enhance the campus network of open spaces and complement existing and future program functions. The masterplan also highlights buildings requiring replacement because they are reaching the end of their useful life.

The evolution identified to the right is conveyed as 10 year goals and 20 year goals in order to provide some level of prioritization. The buildings are listed in no particular order, allowing flexibility to adjust over time.

The Walla Walla Campus is spatially organized around a central building (Main Building D) along with a fan shaped parking lot that radiates from the main building. This naturally and geographically is the heart of campus. The main building can benefit from a new entry addition along with an adjacent entry plaza in order to create a more positive and welcoming experience for potential and existing students, faculty and the general public. The main, fan shaped parking lot will be greatly improved with the addition of pedestrian pathways that separate people from vehicles as well as connecting to the buildings along Isaacs Avenue to the center of campus. It is envisioned that the parking lot drainage would also be upgraded to drain to the landscape islands. The current design is to sheet drain west to one catch basin, which creates a safety concern during freeze cycles.

One of the projects in the 10 year goals is to improve the main campus entry along Tausick Way, greatly enhancing the college’s visibility and identity within the Walla Walla community. The Dietrich Activity Center is an iconic element for the campus. Previous master plan proposals have identified to place buildings in front of the activity center, hiding it from view. Through much discussion with the college, it has been expressed that future buildings should not block the view. Campus Loop Drive will be realigned to axially align to Main Building D, so that all visitors/patrons will pass by this important landmark. The realignment of Campus Loop Drive will make way for the new STEM Building. The STEM Building is proposed to be located on the existing tennis courts, building new courts west of the softball field.

Another notable modification is to Campus Loop Drive. With demolition of the group of Expo Buildings, realignment of Campus Loop Drive is possible, creating a much more direct access to the Agriculture facilities and Water Center. In the distant future, the vision is to extend Campus Loop Drive to Isaacs Avenue further to the east along with the acquisition of property to make this connection viable.

10 year goals
A Campus Entry
B STEM Building
C Entry Plaza
D Replace Expo ’74 Buildings
E Water Center Expansion
F Storage Enology and Viticulture
G Batting Cages
H Enterprise / Entrepreneurial & Hospitality Center
I Tie Campus Together with Pedestrian Pathways
J Relocate Auto Technology
K Relocate Golf Practice Facility
L Relocate Tennis Courts
M Potential Future Campus Expansion
N Biological Science Lab Remodel

20 year goals
O Activity Center Expansion
P Housing (On / Off Campus; Public / Private)
Q Campus Drive Extension / Reconfiguration
R Potential Student Housing Location

Right: The proposed Walla Walla Campus masterplan including the future campus loop configuration and the siting of 10 and 20 year projects within the campus fabric. Refer to the key above for further information.
Due to the location of the Walla Walla Community College Campus most faculty, staff and students arrive by car. Transit bus service arrives every 25 minutes between 7 a.m. and 7 p.m. There is also a bus service that brings students from the Dayton/Waitsburg area as well a bus of commuters from the Confederated Tribes of the Umatilla Indian Reservation.

EXISTING VEHICLE CIRCULATION

Currently the Campus has one primary drive which connects Tausick Way with Isaacs Avenue, with access to the primary and secondary parking areas. This road does not serve the parking areas adjacent to the Automotive Tech. Building and the Center for Enology & Viticulture (Buildings 200T and 200V). Access to Water Center Drive is difficult to navigate and feels like one is crossing a threshold to the backside of campus— alluding to a feeling that one should not be entering without proper clearance.

The primary access used by most students is from Tausick Way. Most of the parking on campus is contained within the centrally located, fan-shaped lot. This lot is concentrically ordered with the focus on the main building entry area. The primary access way in this parking lot is in alignment with the main entry area as well. A service drive which allows access for delivery trucks, as well as a bus stop with turn-around, is located along the east side of this parking area. Other secondary lots exist to the east of the Enology and Viticulture (200T) and west of the Automotive Technology Center (200V), north of Health Science and Performing Arts (200E), a small lot east of the Technology Center (200F), a large lot east of the Professional Technical Building (200L), parking centered within the agricultural complex and a separate lot for the Water & Environmental Center (200R) plus a small lot adjacent to the Parent Child Center (200B). Additional parking is currently under construction for the new Skills Center. There are approximately 1,743 total (including 150 south of the softball field) parking stalls available on the main Walla Walla Campus. The new Skills Center eliminated some parking which will be replaced as part of the new construction.

The primary fan-shaped parking area began with the first construction as a smaller wedge, providing for future growth. Unfortunately, this layout is now very limiting and does not allow for further flexibility. This main parking lot now has 882 parking stalls, nearly half of the total number on campus. As other buildings were added to the campus, parking was added in a somewhat unordered way on an as-needed basis. The resulting layout lacks any organizing theme or coordination and is not efficient or defined in many places.

PROBLEMS WITH EXISTING CONDITIONS

The existing road and parking system has a number of problems which require consideration. The campus drive roadway carries a considerable amount of traffic entering from and exiting onto Tausick Way. The concern with this entry is due to congestion which occurs during peak hours and the resulting difficulty with south-bound traffic making left turns into the campus. A traffic study has recently been performed in conjunction with the new Skills Center, as requested by the City of Walla Walla. The solution to help alleviate traffic congestion on Tausick Way is to add another entry to the campus, which is being provided at the new Skills Center.

The large parking lot is a source of considerable concern. The access to the roadway poses vision difficulties and the almost complete lack of accessisle definition through landscaped areas presents safety problems. Pedestrian access from within this parking area to the buildings is not completely safe due to the lack of separation from the cars. The curved row format makes determinations of empty spaces quite difficult. The lot currently has significant storm drainage problems which require attention.

A few buildings require exiting the campus in order to reach their associated parking lots. This tends to separate rather than connect the different buildings. Pedestrian connections from some of the buildings are interrupted by vehicle drives. The parking needs of the campus are also not completely being met by the number of stalls available. There is a
considerable amount of inefficiency in the layouts of several of the parking areas. The large unpaved parking area to the east of the Professional Technical Buildings requires parking stall definition.

FUTURE PROPERTY ACQUISITIONS
Consideration has been previously given to the potential purchase of property to the east, west and south (across Mill Creek) of the campus. If any development is pursued in these areas, associated parking lots will be necessary. It will be important to tie in the properties to the south and west as much as possible with the proximity of the bike path along Mill Creek. The property to the east has the potential to provide another means of entry to the campus by extending the roadway out to Isaacs.

POSSIBLE SOLUTIONS
The problems with the existing vehicular circulation and parking on campus could be solved with varying degrees of improvements. If it were feasible, it would be nice to have a loop road around the main building groupings. This, however, is not likely due to the difficulties of bridging over Titus Creek and through the natural wetlands. Short of this measure, it is still important to decentralize the parking to improve circulation, proximity to buildings, safety, drainage, and aesthetics.

Left Top: Geometric, landscaped berm softens the hardscape of large parking facilities.
Left Bottom: Integrated pedestrian pathways within parking facility surrounded by native landscaping.
Right: Blurring the traditional hard lines between pedestrian and vehicular interaction.
suggested improvements

1. Provide more definition to the main campus entry on Tausick Way to improve campus identity.

2. Realign Campus Drive to align with the Main Building D – improving access to the central hub of campus.

3. Divide the main parking area into smaller regions with improved pedestrian and vehicular safety. This includes new landscaping and appropriate signage.

4. Organize, pave, and stripe the gravel area to the east of the Professional Technical Building. Include bio-filtration landscaping.

5. Reorganize and stripe the parking area within the agricultural building complex so that the storm water run-off will be directed into bio-filtration areas instead of Titus Creek.

6. Provide additional parking south of the Technology Center and eventually at the site of the demolished Expo '74 Buildings.

7. Repair existing light fixtures that do not work.

8. Provide additional bike racks in several locations to encourage bike use.
After the faculty, staff and students arrive; a vehicle is usually not needed until they are through with all of their activities and classes — in other words, a “Park Once” strategy. The routes of pedestrian access and circulation are significant to the daily activity of the campus.

EXISTING PATHWAYS
The Walla Walla Campus has a variety of pathways which serve to connect the buildings and parking lots. Some of these pathways are quite well defined and effective, others less so. The ones adjacent to the main building, Professional Technical Center and the Dietrich Activity Center are well coordinated with the building entries and, to a certain extent, the parking lots. The path to the Technology Center is also well defined and is, in fact, one of the most striking linear features on campus. Defined pathways are not available crossing the gravel parking area to the agricultural buildings or Child Care Center from the Main Building Complex. A path extends from the central parking area to the parking areas on Isaacs Avenue, but it is not well defined to the entries. Paths also extend from the main building to the Women’s Center and to the Parent - Child Education Center. The bike path along Mill Creek connects to the main building by two paths.

PROBLEMS WITH EXISTING CONDITIONS
Parking and pedestrian conflicts exist where there is a lack of clear definition and expectation of action. Where there is clear definition, rules are more clearly understood and safety is improved. The pedestrian routes within the central parking area and especially within the gravel lot are poorly defined due to lack of pedestrian friendly features such as sidewalks, crosswalk striping and warning signs. The path connecting to the Isaacs Avenue buildings require pedestrians to walk through the central parking lot if they are coming from the Main Building Complex. The configuration of the central parking area also places the majority of the drivers the farthest away from the building due to the fan shape.

Access to the Child Care Center from the Main Building Complex requires the crossing of a largely undefined parking area, then crossing the campus road without the benefit of a crosswalk.

FUTURE LAND ACQUISITIONS
When the properties to the east, west and south are purchased and developed, it will be very important to design pathways which connect them to the Main Building Complex. The property to the south across Mill Creek will require a pedestrian bridge across the Creek. The property to the east will need new paths adjacent to the agricultural buildings and Water Center. All of these elements could be built at the time the property is developed.

POSSIBLE SOLUTIONS
Paths can provide strong connections between different elements. An example of this is seen in the connection with the Technology Center. Some adjustments to the existing pathway system could be implemented to create better cohesion and improve safety between buildings. Along with appropriate signage, better organized pathways will serve to unify the campus and orient visitors. Improving the proximity of parking spaces to the buildings they serve will improve safety and efficiency. Better defined paths to the northwest buildings along Isaacs Avenue will help to connect these to the Main Building Complex. A system of paths with nodes should be investigated to help organize the campus. Stronger ties to the Mill Creek bike path and perhaps other City of Walla Walla present or future walkways should be developed.

Right: By altering the Campus Loop Drive and parking lot configurations, campus becomes increasingly pedestrian friendly. The strongest connections occur from the outlying areas of campus to the front of, and through, the Main Building.
1/4 MILE TO CRAIK BUILDING

pedestrian circulation
Below: A collection of pathways create an active pedestrian node on campus that help foster chance encounters. Right: Main pathways assist in framing particular views on campus of natural and man-made elements.
suggested improvements

1. Provide a stronger pathway to the northwest buildings that are consistent across campus.

2. Divide the large parking lot to create defined pedestrian pathways to connect the Skills Center and Health Science Building.

3. Provide stronger pathways to the agricultural buildings and Child Care Center.

4. Upon demolition of the Expo ’74 Buildings, provide additional parking/open space to support two new buildings.

5. Enhance the connections with the bike path along Mill Creek and perhaps extend a new path to loop around the campus.

6. Introduction of trees/landscaping in between sidewalks and roadways in order to improve pedestrian safety.

Below: Reinforcing the connection of the public trails along Mill Creek to the heart of campus through pedestrian corridors will encourage students to use other means of travel to get around the Walla Walla Campus.
As anticipated growth continues over the next 20 years, consideration should be given to the acquisition of adjacent properties.

PROPERTIES TO THE EAST
The areas to the east of the current boundary of the campus hold significant possibilities for development to satisfy the anticipated growth of Aqua Culture and Agricultural related curriculums. There is considerable area potentially available (up to about 30 acres) for new campus structures and parking and has the advantage of being adjacent to Mill Creek and the bike path. An additional vehicular access from Isaacs Avenue would alleviate vehicular loads on the existing entry. Presently, this area is outside the City of Walla Walla and outside of the Urban Growth Area. The next opportunity to adjust the Urban Growth Boundary is mid-2018 and will take roughly 18 months to complete this process. If the City zones this as Public Reserve, developments within this area would need to meet those City of Walla Walla development criteria.

PROPERTIES TO THE WEST
The vacant property to the west of Tausick Way is visually tempting for acquisition; however, the history of this property is of significant importance. This area was previously used as the City of Walla Walla landfill. Methane gas is seeping through the surface and the City is monitoring the site. It may be quite a few years before this land could be developed and, even then, there would be significant restrictions for its use. Potential uses include parking and recreation.

PROPERTIES TO THE SOUTH
On the south side of Mill Creek, directly across from the main building cluster, is property which could have considerable merit for dormitory development. These 10.76 acres have the advantage of proximity to the campus center, while still having some natural separation. Obstacles to the development of this property include the need to build a pedestrian bridge across Mill Creek and the need to extend utility services and road improvements to adequately serve the property. Utility services are at the intersection of Tausick Way and Reservoir Road.

ADJACENT TO THE CRAIK BUILDING
The property to the west of the Craik Building holds some advantage for the truck driving classes and vehicles. This area should be considered for future acquisition.

SUMMARY
The infrastructure hurdles associated with the development of adjacent properties should not discourage the planned pursuit of some of these areas. The property to the east of the agricultural buildings should be considered for future development for Professional Technical and Agricultural related curriculums. The Water Center plans to expand by possibly providing an Aqua Culture Building. An additional vehicular entry to the campus should be pursued from this property.

The property to the south of Mill Creek could be considered for development of dormitories. The separation provided by Mill Creek would require further study regarding building cost and infrastructure.

The property to the west of the Craik Building should be acquired for use as the new location for the Truck Driving School.

Given the campus’ location within a more natural landscape, the preservation and enhancement of specific views as well as particular attention to future building siting is critical.

Right: Potential land acquisitions for the Walla Walla Campus exist to the north, east, and south. These properties could be used for future campus expansion projects and campus housing sites.
EXISTING VIEW CORRIDORS
It is important to note that existing view corridors are an important asset of the Walla Walla Community College Campus. The college is situated in a rural setting with great views of the Blue Mountains in the distance. The college desires to continue to preserve these view corridors by maximizing open space between future building developments. Key themes related to open spaces included building orientation, creating open spaces with various sizes and functions, and the importance of the campus’ proximity to Titus and Mill Creeks. As an organizing feature to promote social interaction, outdoor learning, recreation, and the overall campus ambiance, buildings should be integrated and correlated with campus open space elements. Enhancing and defining under used areas, protecting and celebrating existing open spaces, and establishing new open spaces adjacent to existing and new buildings is recommended.

CREATION OF VIEW CORRIDORS
Relocating Campus Loop Drive within the context of campus affords an initial view of the Activities Center upon the entry to campus. The unique architectural character of the Dietrich Activity Center will assist in yielding a positive first impression of the Walla Walla Campus. However, this is only the first of many view corridors that will be created amongst the ten and twenty year master plan goals. Building locations were chosen to enhance the character of campus by reinforcing the natural amenities traveling parallel to, and through the center of campus. Replacing the Expo ’74 buildings affords increased connection to Titus Creek to the west of the Main Building. The future location of the Water Center Expansion is pulled away from the existing building to reinforce the connection of the Water Center Complex to the surrounding natural environment.

DEFLECTION OF UNDESIRABLE VIEWS
While the preservation and creation of specific view corridors is vital to the campus connection to nature, protecting other zones of campus through the deflection of view should be weighted equally. Landscaping elements, such as large groves of trees, can begin to reduce the visual impact of the Agriculture storage areas while restoring this portion of Titus Creek to its more natural habitat.

Right: Careful articulation to future building location can assist in the creation of specific view corridors as well as the deflection of unsightly areas geared towards campus maintenance and storage.
The Walla Walla Community College Campus benefits from having desirable amenities within its boundary and surrounding context.

MILL CREEK & ADJACENT PATHWAYS
Mill Creek is the striking feature which forms the southern boundary of the campus. Even though the stream has been artificially engineered to flow in a particular manner, it remains a natural feature containing trout, the occasional migrating salmon, as well as habitat for Kingfishers, Blue Herons, Hawks and Songbirds. The adjacent bike path is often used and well maintained. The southern part of the campus is viewed from this path. The recreation areas present a pleasing appearance while the southeastern fields do not. The campus could better embrace this amenity.

TITUS CREEK & ADJACENT NATURAL AREAS
The campus also benefits from having a creek meandering near the heart of the property. This creek provides habitat to birds, small mammals and the occasional deer. There is a considerable amount of work that has been done to enhance this amenity. The slack water formed by the concrete patio off of the main building creates a shallow, stagnant area which promotes algae growth, has been removed. The college has completed restoration of the middle section of Titus from the culvert on Water Center Drive to just past the foot bridge from Building D to the Water Center. The college is planning additional restoration work on the lower portion of Titus Creek on campus. The main goal of the plan is to modify the mouth of Titus Creek at the City bike path to eliminate the fish passage barrier. Currently Titus Creek passes through a culvert under the bike path. Portions of the creek are also constricted with grasses. If these portions are provided with shade, the grasses would have more difficulty getting established. The State of Washington Departments of Ecology and Fish & Wildlife will play a strong role in the decisions regarding the improvement to Titus Creek. Anderson Perry has been working on this restoration project with the college.

VIEWS OF THE BLUE MOUNTAINS
The 2005 Master Plan made recommendations to create a view corridor from the main building to better view the Blue Mountains. This would entail the selective trimming and/or removal of some of the trees near Titus Creek. This would enable a few rooms within the main building, mostly on the second floor, to obtain these views. This should be carefully evaluated due to the small number of spaces which would truly benefit. It may be more advantageous to create more local, desirable views throughout the campus on all sides. Additional information will be provided in the Landscaping & Irrigation section.

LARGE OPEN SPACES
The Walla Walla Campus benefits from having a considerable amount of land, with large areas of open space and landscaping. The largest portion is located within the recreation zone, but there are also open spaces near or around most of the buildings. In addition to these more manicured areas, the southeast portion of the campus is still undeveloped.

FORMAL AND INFORMAL LANDSCAPING
The northern portion of the campus is far more manicured and formal than the southern portion. This creates a strong dividing line between the two areas, roughly following the course of Titus Creek.

SUMMARY
The Walla Walla Community College is fortunate to have these amenities on or adjacent to the campus. These amenities could be enhanced with proper stewardship and care, along with appropriate adjustments to parking and landscaping.
suggested improvements

1. Continue to restore natural order to the portions of Titus Creek where it is lacking.

2. Preserve the natural landscape/habitat along the southeast portion of the campus adjacent to the bike path and both creeks.

3. Consider a water or special landscaping feature in the new entry plaza to help balance the amenities in both the “Front Yard” and “Back Yard”. The goal is to create a more welcoming environment for visitors and potential students, which the existing grass berm does not presently provide.

Below: Current campus natural scape includes tall grasses and other native species. **Right:** Mill Creek forms the southern campus boundary and habitat for many species.
The Walla Walla Community College Campus includes both organized and unorganized recreation activity areas which predominately occupy the western portion of the campus.

BASEBALL & SOFTBALL FIELDS
The southwest portion of the campus is home to the baseball and softball fields, which are clearly visible from Tausick Way. Both fields are fenced and have uncovered viewing stands. The baseball facility also has a press box. Outdoor batting cages occupy an area between the two fields. Both fields appear to be in good shape. These fields have an adjacent parking lot holding up to 148 vehicles, accessed from Tausick Way. Lockers and showering facilities are located to the east in the Dietrich Activity Center. The Community College has installed modular concessions and restroom facilities to improve the spectator experience at these athletic fields.

SPORTS FIELDS
These fields are turf areas located north of the ball fields. Grass extends all the way to the main access drive. The fields are used for both organized and unorganized activities. Due to the quantity of turf, this area requires considerable maintenance and irrigation.

TENNIS COURTS
The tennis courts are located north of the Dietrich Activity Center and adjacent to the main entry drive. They are a very visible part of the entry drive experience. The court surface, nets and surrounding fence are in reasonable condition except for large cracks which have developed on the play surface. As these cracks continue to widen, the time will eventually come when the surface will need to be replaced. Lockers and showering facilities are located to the south in the Dietrich Activity Center. The courts have very little viewing opportunities due to the lack of benches or bleachers. Spectators either bring their own chairs or sit on the grass. The main parking lot is directly east of the courts. Due to existing condition of the tennis courts, it has been proposed to place the new STEM Center in their place.

BIKE PATH
The bike path that runs along Mill Creek extends from Cambridge Drive (near Wilbur Avenue) in Walla Walla, and eastward to Rocks Park. This paved trail is used by pedestrians, bicyclists, and runners. The campus has a pair of paths which connect to it and it is directly accessed by the parking area adjacent to the baseball and softball fields. This path has tremendous potential as an alternative means of arrival on campus. Also, it must be recognized that the campus is often viewed from this path and, therefore, must be considered an important impression for the public.
suggested improvements

1. Construct a press box for the softball stand, in keeping with the requirements of Title 9.

2. Relocate the indoor batting cages to a new building closer to the ball fields, perhaps between them. This structure could be located near the new concessions and toilet facilities.

3. The location of the tennis courts could be improved by relocating them adjacent to Tausick Way near the softball field. There is adequate parking to serve them as well as better community access.

4. The tennis courts would benefit from having viewing benches or bleachers installed.

5. A bike path or similar surface which encircles the campus and connects to the existing bike path adjacent to Mill Creek, would provide students and sports players alike a route for running/biking which would be of considerable distance and variety. This path could also integrate with the pedestrian connections between buildings.

Left Top: Separation of vehicular, bike, and pedestrian pathways enhances safety on campus but may not be possible due to space consumption. Left: Creative recreational motifs may encourage increased use amongst students and faculty.
The Walla Walla Community College campus displays a variety of landscaped areas.

EXISTING LANDSCAPING
There are trees located in grass areas, some of which provide edges to ball fields and roads. The Center for Enology and Viticulture has a small test vineyard while the Technology Center has a two-hole golf course and putting green to the north.

The area to the north of the Health Science and Performing Arts along Isaacs has no landscaping. With the exception of the golf course, there is very little landscaping along Isaacs.

The south side of the Water Center is intended to be natural with a Learning Garden adjacent to the building. The area along Titus Creek has been modified and developed into a natural creek bed with observation platforms.

The area south and east of the agricultural complex is undeveloped and used for parking vehicles and equipment. An organized method of vehicle and equipment storage would allow for some barrier planting to partially hide the view of the equipment.

The existing fan parking area is a large area of asphalt that could benefit from planter islands and drainage swales. The swales would provide green areas as well as solve some of the drainage and runoff problems.

The planting in front of the entry to the main building could be formalized to provide a better sense of entry and partially block the views of the asphalt area from the reception area. This area would benefit by creating a new entry plaza to promote social interaction, outdoor learning and the overall campus ambiance.

IRRIGATION REQUIREMENTS
Well water is used as a heat source for the main building. The system is closed loop except for some cooling water that goes to the irrigation system. A Netafim (underground drip system) should be considered for areas of new landscaping and areas to be modified in the future.

The Netafim System eliminates evaporation loss and significantly reduces water usage.

DROUGHT TOLERANT & NATIVE PLANTS
In order to reduce water use while still maintaining a beautiful campus, the implementation of drought tolerant and native plants should be pursued. Converting higher maintenance lawn areas to native grasses and sedges will reduce the overall water consumption. Introducing the principals involved in Xeriscaping would also create a favorable impression to the community. Native plants require considerably less fertilizers and pesticides, they need less water, they help to reduce air pollution because they do not require mowing, and they provide shelter and food for wildlife through biodiversity. Native plants also save money. Researchers at the Applied Ecological Services of Brodhead, WI estimate that over a twenty year period, the cumulative cost of maintaining a prairie or wetland totals $3,000 per acre verses $20,000 per acre for non-native turf grasses.

RECYCLING STORM WATER
The existing parking lots and most buildings discharge their rainwater into subsurface piping which eventually discharges into either Titus Creek or Mill Creek. This is a very inefficient and wasteful way of dealing with a considerable amount of water. It would be quite advantageous and appropriate to make adjustments to this system so that the run-off becomes useful for the landscaping, while at the same time preventing pollutants from directly entering the creeks. Planting appropriate grasses, shrubs and trees in newly created bio-filtration swales will help to recycle the water run-off of the parking areas and buildings. Another option would be to capture the run-off in subsurface containment vessels for re-use in irrigation when needed. This option would require a further analysis to determine if it is reasonable in these circumstances.
The organized play fields and child related play areas require the first water priority due to their specific turf use.

The unorganized play fields get second priority.

Convert as much lawn area as possible to more native grasses and landscaping to reduce irrigation.

Use rocks and other low maintenance landscaping elements for punctuation and variation.

Reclaim as much storm water as possible from the impervious surfaces through bio-filtration and landscaping, or containment storage vessels.

Reduce large parking areas into smaller ones with surrounding native landscaping.

Continue to restore the natural riparian landscape along Titus Creek.

Convert some areas to organic agriculturally related uses (vineyards, grazing fields, vegetable crops, herb gardens, etc.) for education related purposes. This may be appropriate for the southeast area of the campus. Agricultural machinery & irrigation equipment could also be tested in this area. A new crop circle is being planned to be placed in this area.

Lower the berm at the entry area and create a new entry plaza that is vibrant and enhances the college experience.

A water or special landscaping feature could also be incorporated to enhance the main building entry area.

Use landscaping and paving textures to separate pedestrian traffic from vehicles as well as increase driver awareness and calm traffic. Vertical elements such as street trees, vegetation and site walls can be utilized to visually break down the scale of the site into less daunting units that complement pedestrian scale.

Left Top: A more refined and landscaped campus loop helps soften the hardscape and reinforce the natural beauty of the surrounding context.

Left Middle: Organic campus pathways with a mixture of plantings provides multiple types of outdoor spaces for student use.

Left Bottom: Introducing specific hard surfaced amenities (i.e. seating surfaces, etc) creates a balanced mixture between the built and natural environments of campus.
Due to the significant amount of impervious surfaces on the campus, there is the need for careful planning and design to improve the surface water management. The following are important issues regarding surface water drainage:

EXISTING SURFACE WATER DRAINAGE
The Walla Walla surface water drainage systems can be divided into three categories; landscaping areas, parking areas/roadways, and buildings. These areas are discussed separately below.

The landscaped areas receive moisture from both rainwater and irrigation. The only times when these areas have difficulties are when the amount of moisture exceeds the capacity of the landscaping (soils) to contain it. These events could occur during extreme conditions, or if excessive run-off is directed onto the landscaping.

The parking areas and roadways presently either sheet flow onto adjacent landscaping, into catch basins and drywells for percolation, or into collection systems that are directed to established waterways. The roadway and a couple of the smaller parking areas primarily drain onto adjacent soils, while some parking areas appear to drain to catch basins which are piped to discharge into Titus Creek. The main parking lot drains to the farthest west corner where the water is collected and piped to a bioswale near the baseball field. The baseball and softball parking area is also drained into Mill Creek.

The buildings distribute the rainwater that falls on them in a variety of ways. Some of them merely allow the water to drip onto adjacent landscaping, some have gutters which direct the flow to point discharges at grade, while the main building discharges the rainwater eventually into Titus Creek.

PROBLEMS WITH EXISTING CONDITIONS
For the most part, there are very few surface water problems with the landscaped areas. The parking lots and buildings are another story. The main parking lot has considerable difficulty draining during storm events as the entire lot is designed to drain to one corner. The slope required to achieve this is difficult to maintain, and results in considerable ponding.

The paved areas near the agricultural buildings are also of considerable concern. This is due to the present condition where the parking areas drain to a catch basin which is piped into Titus Creek. This is a serious problem due to the needed repairs of agricultural equipment, combined with the lack of satisfactory oil / water separators. Pollutants entering Titus Creek and eventually Mill Creek, are the unfortunate result.

At the time of the construction of the early buildings and the main parking area, it was satisfactory to pipe rainwater into established creeks (Mill & Titus), or into sanitary sewer systems. This is now a code violation due to significant environmental concerns and build-up of siltation over time. More recently, engineered collection systems with subsurface percolation is the state of the art for surface water drainage. This method is also now seen to be somewhat problematic due to the inevitable siltation that plugs these systems and the lack of any removal of any hydrocarbons or other impurities. The current environmentally preferred method for dealing with surface water is to utilize bio-filtration swales within landscaping areas. These work best in association with smaller parking areas, which have adequate drainage slope and dispersed roof drainage systems. Essentially, smaller and less concentrated drainage patterns are desirable for both parking areas and buildings.
POSSIBLE SOLUTIONS

There are many ways available to improve the current situation regarding surface water drainage. Reconfiguration of the main parking lot into smaller areas with drainage zones utilizing biofiltration landscaping would greatly reduce the existing problem. The designs for these systems would have to be based on the latest data for a 25 year storm event. The agricultural buildings parking area drainage would need to be completely revised to keep pollutants from entering Titus Creek. The existing main building drainage systems could also be re-worked to drain into biofiltration landscaping instead of into Titus Creek. By allowing landscaping to use and filter run-off from the buildings and parking lots, water is essentially being recycled. This then has the potential to greatly reduce the needs for irrigation. These adjustments could be coordinated with other site improvements to landscaping, parking and pathways.

suggested improvements

1. Introduce landscaping areas within the central parking area for better control of surface water.
2. Abandon the pipe system which directs the baseball parking area storm water into Mill Creek and create biofiltration areas for surface water run-off.
3. Distribute the parking areas so that sufficient landscaping is provided to bio-filtrate the run-off.
4. Redirect the points of discharge for the main building roof drains into newly defined bio-filtration areas prior to entering Titus Creek.
5. Create a bio-filtration swale within the area of the agricultural buildings parking area, with an overflow into adjacent landscaped areas.
6. Consider converting concentrated points of discharge from roof into sheet flow or drip areas. Essentially, this means removing gutters and downspouts where possible.
The Walla Walla Community College Campus is served by electrical, telephone, cable, sewer, water, and gas utilities. These utilities provide the vital infrastructure necessary to keep the buildings functioning and serving the students and faculty. The following elements are of important concern to the future development of the Walla Walla Campus:

ELECTRICAL SERVICE

The Walla Walla Campus is provided with electrical service from several locations. The Main Building Complex including Professional Technical, China Pavilion, the existing Health Sciences building, the Dietrich Activity Center, Parent - Child Center and the Women’s Center is served by a 12 KVA electrical service from Isaacs Avenue near the present access drive. The service is provided to the central switchgear room in the basement of the main building and from there distributed to the adjacent structures. The Technology Center is also served by this line but independent of the main building. The other buildings on Isaacs Avenue are also independently served. The John Deere, Ag. Diesel #1, Farrier, and Ag Diesel #2 buildings are served from a power pole located to the northeast of the cluster. A conduit with pull wires has been installed from Tausick Way to the vicinity of the softball and baseball fields for future service. Presently, the baseball field is provided with temporary electrical power from the Dietrich Activity Center.

There appears to be a continuing problem associated with the primary service to the main building. It is unfortunate that so much of the campus is reliant on this service line. This puts the Walla Walla Campus in significant jeopardy when a serious problem develops. In fact, a feeder was blown in December 2013 and the emergency service wires were replaced soon thereafter. The primary feeders will need to be replaced soon and the primary panels should also be considered for replacement as well. An updated review of the main electrical service by an Electrical Engineer is suggested to determine what measures could be taken to avoid future issues.

DATA SERVICE

Currently all buildings have telephone service and most have cable connections. Improvements to these services may not be necessary due to the potential implementation of wireless service apparatus. This is an area of ever-changing technology and should be monitored carefully to determine the best course of action.

GAS SERVICE

Most of the Walla Walla Campus buildings are provided with natural gas service. The west end of the main building (from “Warrior’s Knee” westward) is not served with natural gas, but gas lines could be installed in the future when the need arises. The gas apparatus is easily seen in the grassy area adjacent to the main drive, and in the landscaped area adjacent to the China Pavilion. No deficiencies appear to exist in the system.

WATER SERVICE

The entire campus is adequately served by domestic water lines. The 8” water main should be looped in the near future (around the Dietrich Activity Center) to allow for alternative flow for fire fighting. A predominant portion of the buildings do not have adequate backflow protection.

SEWER SERVICE

All of the Walla Walla Campus buildings are connected to the City of Walla Walla sewer system. At this time, no inadequacies have been noted or discussed.
suggested improvements

1 The primary electrical conductors to the central building cluster need to be replaced and a review of the panels and service equipment in the basement of the main building should be performed by an Electrical Engineer.

2 The water service loop should be completed when improvements occur adjacent to the Dietrich Center.

3 Investigate the option to install wireless service apparatus to eliminate the need for more invasive infrastructure.

4 Emergency generators would be desirable for the main building & Professional Technical Buildings, the Water Center, the new STEM Center and for Dietrich Activity Center.

5 New PBX and UPS systems are desired for improvements to the campus phone system.

6 The City of Walla Walla is requiring backflow protection for all buildings on campus. The implementation of these devices is currently being reviewed.
Continuing Improvements

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Campus Barrier-Free Improvements</td>
<td></td>
</tr>
<tr>
<td>O S Campus Technology Improvements</td>
<td></td>
</tr>
<tr>
<td>SC Electrical Systems Improvements</td>
<td></td>
</tr>
<tr>
<td>SC Energy Efficiency Improvements</td>
<td></td>
</tr>
<tr>
<td>G Storm Water System Improvements</td>
<td></td>
</tr>
<tr>
<td>F Signage Improvements</td>
<td></td>
</tr>
<tr>
<td>SC Fire & Life Safety Improvements</td>
<td></td>
</tr>
<tr>
<td>G O Landscaping Adjust. (Native Plants)</td>
<td></td>
</tr>
</tbody>
</table>

10 Year Goals

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC S Campus Entry</td>
<td></td>
</tr>
<tr>
<td>SC STEM Building</td>
<td></td>
</tr>
<tr>
<td>SC Entry Plaza</td>
<td></td>
</tr>
<tr>
<td>SC Replace Expo Buildings</td>
<td></td>
</tr>
<tr>
<td>G P SC Water Center Expansion</td>
<td></td>
</tr>
<tr>
<td>L Storage for Enology and Viticulture</td>
<td></td>
</tr>
<tr>
<td>L New Indoor Batting Cages, Etc., at Fields</td>
<td></td>
</tr>
<tr>
<td>SC U Enterprise/Entrepreneurial & Hospitality Center</td>
<td></td>
</tr>
<tr>
<td>SC S F Tie Campus Together with Pedestrian Walkways</td>
<td></td>
</tr>
<tr>
<td>SC Relocate Auto Technology</td>
<td></td>
</tr>
<tr>
<td>L Relocate Golf Practice Facility</td>
<td></td>
</tr>
<tr>
<td>F S Relocate Tennis Courts</td>
<td></td>
</tr>
<tr>
<td>SC COP Potential Campus Expansion</td>
<td></td>
</tr>
<tr>
<td>SC (Minor) Renovate Offices on N. side of Bldg. D</td>
<td></td>
</tr>
<tr>
<td>SC (Minor) Renovate Science Labs & Admin 2</td>
<td></td>
</tr>
</tbody>
</table>

20 Year Goals

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Activity Center Expansion</td>
<td></td>
</tr>
<tr>
<td>P G Student Housing (On/Off Campus Public/Private Partnership)</td>
<td></td>
</tr>
<tr>
<td>U Campus Drive Extension/Reconfiguration</td>
<td></td>
</tr>
<tr>
<td>P G Potential Student Housing Location</td>
<td></td>
</tr>
</tbody>
</table>
The Walla Walla Community College, Clarkston Campus is an arrangement of independent buildings and open spaces that occupies an area approximately 496,500 s.f. (over 11 acres). The campus is located north of Bridge Street (State Highway 12), at the western edge of the City of Clarkston at the intersection of Bridge and 15th Street. Programs in Clarkston date back to the early 1970’s when a Continuing Education Program was launched in cooperation with the School District in Clarkston. The Clarkston Campus was established in 1985 when WWCC acquired a prime location and built the main campus building. Students have access to an Associate Degree Program, Basic Education, and an Associate Degree Nursing Program which enrolls approximately 135 FTE. It is noteworthy that a large animal veterinary clinic occupied the property which consisted of two buildings plus a residence. These buildings were "remodeled" and continue to be used today. In the early 1980’s the college purchased an adjacent property which included an older vacated house and horse stable. All of these older buildings are in use and need to be replaced. The Clarkston Campus has very limited space and workforce offerings. The following is a discussion of relevant issues pertaining to the general character of the campus.

HISTORY

With the construction of the main building, the Clarkston Campus of The Walla Walla Community College started classes in 1988. Histories of each building are provided in each building description.

CAMPUS IDENTITY

The Clarkston Campus does not have the complexity the Walla Walla Campus has; however, the buildings are still dissimilar in size and appearance and lack visual unity. The following criteria help to unify the unique buildings:

A Proximity

Only the Fair Street House is located a considerable distance apart from the main building. This is mostly mitigated by having a useful and strong pedestrian connection to the main building.

B Orientation

All of the buildings face their respective access streets, with their backs to each other. This could be improved by updating pathways and treatments to the backs of the buildings.

FACILITY LAYOUT

The Clarkston Campus is divided into two major development zones:

A Ancillary Support Zone

B Academic Zone

THE ANCILLARY SUPPORT ZONE

This zone includes the Child Care Center, the Head Start Building, and the Fitness Center (the Stable Storage Building and the Fair Street House). These structures are relatively small, single story buildings which lack a sense of permanence. They were built using less substantial materials and methods of construction. The Fair Street House was remodeled in 1998 to serve the new use, but with considerable compromise. The open areas around these buildings have marginally established grasses, except for the area to the south of the Fair Street House which is turfed and fenced. Neither building meets current energy and construction codes.

ACADEMIC ZONE

This zone is composed of the Main Building and Health Science Building. Large parking areas and grassed open areas are also designated within this zone. Any development that occurs in this area would have the highest degree of visibility and access.

A long term view of the campus property must consider the temporary nature of the structures north of the main building. Their current position and configuration should not limit the potential for future growth on the campus.

SUMMARY

In order to create a unified campus identity, the Ancillary Support Buildings should be treated as temporary structures. The placement of the Health Science Building helps direct the growth of campus. Other improvements could be implemented over time, enhancing campus identity. These will be discussed in the other Site Considerations sections.
design principles

1. Preserve Views
2. Create Building Core with Perimeter Parking
3. Main Building Stays Campus Center
4. Sustainable Site Design
5. Encourage Healthy Behavior
6. Stay Current with Changing Technology

site & contextual principles

1. View Corridors
2. Maintain Existing Campus Main Entry
3. Perimeter Vehicle Circulation
4. Available Property North of Fair Street

Right: The current aerial of the Clarkston Campus including all existing structures, parking, and amenities. Reference the key above for building locations and additional information.
FAIR STREET
15TH STREET
BRIDGE STREET
1. **PRESERVE VIEWS**
The campus location has majestic views of the river valley walls to the north. These views should be preserved and used to enhance the quality of interior and exterior spaces on the campus.

2. **CREATE BUILDING CORE WITH PERIMETER PARKING**
The Clarkston Campus property lends itself to limiting vehicle access and parking to the perimeter of campus. By clustering the buildings in the center of the campus, a safe pedestrian pathway system between buildings can be created that does not require crossing roads or driveways.

3. **MAIN BUILDING STAYS CAMPUS CENTER**
The existing original campus building is strategically located at the main campus entry point. This location of the main campus entry and main building should be maintained as the campus grows in the future.
4 SUSTAINABLE SITE DESIGN
As the campus is developed and grows, sustainable site concepts should be implemented. These include, but are not limited to shading asphalt with trees, controlling light pollution, training storm water run-off, preserving open space, and utilizing native plants for landscaping.

5 ENCOURAGE HEALTHY BEHAVIOR
The WWCC Strategic Plan lists wellness as a strategy. Campus planning can affect this goal by providing safe, pleasant, and convenient pedestrian pathways throughout the campus. When done well, this will encourage walking over driving as a means to get around campus.

6 STAY CURRENT WITH CHANGING TECHNOLOGY
New opportunities to use technology to improve the delivery of quality education are consistently emerging. All future campus development and growth should provide the flexibility to include these technologies as they become available.
The Clarkston Campus is confronted with a lack of functional space for current and future enrollment, especially for adding workforce programs and essential student services. The college proposes to construct a 28,000 gsf Workforce and Business Development Center on the Clarkston Campus. This facility replaces approximately 11,500 gsf. Programs and services relocated from replaced space would be Financial Aid, Advising, Counseling, Completion Coaches, ASB, Parent Education and Childcare. The new facility will provide integrated space for Mechatronics, Industrial Maintenance, Construction Trades and/or welding and fabrication targeted to the aluminum boat building industry. Other instructional programs include a Math Emporium classroom, HPER, Entrepreneurship, other business courses, and related activities.

The Workforce and Business Development Center will require additional parking to serve this building. Pedestrian pathways are desired to connect students to the existing Main Building as well the Health Science Building. Preserving the main Quad for graduate commencements is a must as well as upgrading it for leisure activities not present on campus in order to improve the campus experience for all students.

10 year goals

A Workforce and Business Development Center
B Replace the Child Care Center, Head Start Building, Fitness Center, and Maintenance Shop
C Increase Parking
D Tie Campus Together with New Pedestrian Pathway
E Campus Quad
F Potential Lease Property

Right: The proposed Clarkston Campus master plan including the addition of parking lots and pedestrian pathways and the siting of 10 year projects within the campus fabric.
Residents of Asotin and Garfield Counties have been engaged in the process of updating the WWCC strategic and facility master plan in 2013. The community desires to create a place that can help shape the economy and environmental future of the region. They want a campus which fosters collaboration with business, industry, K-12, and other appropriate organizations. Innovation, entrepreneurship, partnership, economic, and environmental sustainability are core values that are driving the need for future expansion. Foremost, the community wants a place where youth and adults with low educational attainment will have the opportunity to access and complete educational programs leading to employment in their economy where skills gaps exist.

As student enrollment increases at Clarkston, the need for future buildings will increase. The plan to the right identifies two future building sites as well as locations for additional parking to serve these buildings. Potential future land acquisitions are identified as well. If land is purchased to the north of Fair Street, the City of Clarkston will entertain the vacation of Fair Street, which will help to preserve a pedestrian friendly campus environment.

Right: The proposed Clarkston Campus masterplan including the addition of parking lots and pedestrian pathways and the siting of 20 year projects within the campus fabric.

20 year goals

G Future Buildings
H Potential Expanded Campus Footprint
I Undeveloped College Footprint
J Future Vacation of Fair Street
10-year goals

Similar to the Walla Walla Campus, nearly all of the faculty, staff and students arrive by car to the Clarkston Campus. Although there may be a few adjustments which could be made to encourage alternative means of arrival, it must be recognized that vehicles are going to be a continued part of the campus. The following issues concern parking and vehicular circulation on the Clarkston Campus:

EXISTING VEHICLE CIRCULATION

Currently the Campus has one primary entry from Bridge Street with a secondary entrance to the east of the parking lot onto Bridge Street south of the Health Sciences Building. These entries serve the primary parking area to the south of the Main Building and Health Sciences Building. This parking area also extends around the west side of the building and then connects with a road that eventually connects to Fair Street. A secondary parking area exists to the north and east of the Main building, with an access from Fair Street. The road does not connect with this other large parking lot directly. Parking areas for the Child Care and Fitness Centers, and Fair Street House are directly off of Fair Street. Additional parking is located across Fair Street directly north of the lot north of Health Sciences.

PROBLEMS WITH EXISTING CONDITIONS

The existing road and parking system has a number of problems which should be reviewed. The entry from Bridge Street has become congested during peak hours, with east-bound traffic having difficulty making left turns into the Campus. The proximity of the entry to the intersection of Bridge Street and 15th is the apparent cause of the problem. The entrance on the east side helps to alleviate some of this congestion. Encouraging students to arrive on Campus from Fair Street will also help to alleviate the congestion on Bridge Street during peak hours. The orientation of the parking lot off of Fair Street takes a big bite out of the center of the Campus, but it does provide sufficient overflow parking during peak periods. Another issue with the existing parking lots is that they have been provided with drywells to handle the storm water run-off, which is no longer the preferred method of treatment.

POSSIBLE SOLUTIONS

As the campus is developed, parking should be moved to the perimeter. Consideration should be given to vacating Fair Street to provide safer pedestrian access from parking to campus buildings.

Right: Parking lot configurations additions to serve the new Workforce and Development Center (10 year goal).
20year goals

The large parking south of Fair Street is a planned building site. The parking lot to replace it should be located so as to keep parking at the campus edge, preserving the pedestrian friendly environment that exists on campus. Additional parking can be added to the parking lot north of Fair Street to meet future demand.

suggested improvements

1. Add parking lots along the perimeter edge of the campus to maintain a pedestrian friendly environment.

2. Relocate the service drive to the farthest west position, and extend the existing parking pattern.

3. Reconfigure the parking lot adjacent to Fair Street to allow for a more open “Quad” at the heart of the Campus.

4. Reorganize the main parking area so that storm run-off is recycled into landscaping areas, instead of wasting it in drywells.
10year goals
Even though there are fewer buildings on the Clarkston Campus than the Walla Walla Campus, the routes of pedestrian access and circulation are still important to the daily activity of the campus. A discussion of relevant concerns regarding the pedestrian circulation on the Clarkston Campus follows:

EXISTING PATHWAYS
The Clarkston Campus pathways serve to connect the buildings and parking lots, and are quite well defined. Most of these paths radiate from the north exit from the Main Building to the other buildings. Defined paths are not available directly connecting the Child Care Center & Fitness building to the Fair Street House. The path extending from the back door of the Main Building to the Fair Street House is adjacent to the north parking lot.

PROBLEMS WITH EXISTING PATHWAYS
Parking and pedestrian conflicts exist where there is a lack of clear definition and expectation of action. Where there is clear definition, rules are more clearly understood and safety is improved. The pedestrian routes within the main parking area are reasonably defined mostly due to the proximity of the parking spaces to the main entry, and the extension of the sidewalk in front of the building.

The pathway to the Family Foundation House only suffers due to its length. Access to the Child Care and Fitness Centers requires the crossing of the service drive.

POSSIBLE SOLUTIONS
For the most part, the pathways on the Clarkston Campus are reasonably organized and clearly defined. Adjustments to the paths would only be required when additional structures are added, or if a reorientation of entries is implemented.

Right: Pedestrian pathways placed in order to connect future buildings and parking lots (10 year goals).

suggested improvements
1 Connect the Main Building outdoor space with the new Workforce and Business Development Center.
2 Create new pathways to connect the parking lots to the north.
3 Create/maintain a quad space for leisure activities to occur.
4 Additional bike racks in several locations would help to encourage bike use, partly because they become a reminder.
20-year goals

Additional pedestrian pathways will be required to connect future buildings as well as parking lots. An emphasis to preserve a pedestrian friendly environment is a must. This may include vacating Fair Street.

Right: Pedestrian pathways placed in order to connect future buildings and parking lots (20-year goals).
The Clarkston Campus benefits from having desirable amenities within its boundaries. It occupies a desirable position in Clarkston, with views of the impressive hills to the north across the Snake River.

PROXIMITY TO THE SNAKE RIVER
The campus benefits from being reasonably close to the Snake River. Although the river cannot be seen from the campus, the climate moderating effect is considerable. The Snake River also provides habitat for year-round resident and migrating birds.

HILLSIDE AND CANYON VIEWS
The campus property has views of the hillside and canyons to the north. These are quite beautiful, especially in the spring. Maintaining current view sheds while creating additional views is desirable.

LARGE OPEN SPACE
The Clarkston Campus has a considerable amount of land, with large open spaces and landscaping. The largest portion is located to the northeast of the main building. There are also large open spaces around the Stables Building and Fair Street House. Open spaces allow students to appreciate the surrounding landscape. Preservation and design of open space will become extremely important as the campus grows.

MATURE SHADE TREES
The Clarkston Campus has quite a few large, mature shade trees. Many of these trees are at least 75 years old. In the hot summer months they provide vital shade to the property and create habitat for birds and small mammals. Maintaining the health of these trees is vital due to their considerable value.

SUMMARY
The current amenities should continue to be embraced through proper maintenance of the grounds, with some enhancement to the landscaping through providing alternative, more natural habitats. This will be further discussed in the Landscaping section.
suggested improvements

1. Maintain current view sheds while enhancing view corridors when placing new buildings in the future.

2. Preserve open space as the campus continues to grow.

3. Preserve the large, mature shade trees and begin to plant additional trees with new buildings.

Upper Right: Careful articulation to future building location can assist in the creation of specific view corridors. Below: A representation of the mature shade trees that exist on the Clarkston Campus. Right: The Snake River and surrounding mountains are just to the north of the center of campus.
Even though the Walla Walla Community College Clarkston Campus lacks organized sports, the opportunity exists for some outdoor activities.

BASKETBALL COURT
The basketball court is located near Fair Street and northeast of the Fitness Center. The court is comprised of asphalt paving with stout steel backstop supports with steel rims, in a half-court configuration. Lockers and showering facilities are located in the Fitness Center.

VOLLEYBALL COURT
The volleyball court is located east of the Fitness Center and south of the basketball court. The sand court and 6 x 6 treated posts appear to be in good shape. Lockers and showering facilities are located within the Fitness Center.

GENERAL OUTDOOR ACTIVITIES
The large lawn areas provide the opportunity for non-specific activity such as frisbee, baseball, football, etc.

SUMMARY
The large lawn areas provide the opportunity for non-specific activity such as frisbee, baseball, football, etc.
suggested improvements:

1. Provide benches adjacent to the volleyball and basketball courts for viewing and rest between activities.

2. Repaint basketball court markings.

Left Top: Performing maintenance on the basketball court to foster increased student use will provide a valuable outdoor amenity for the Clarkston Campus. **Left:** The sand volleyball court is in good condition.
The Walla Walla Community College Clarkston Campus landscaping is composed of well maintained lawns with large shade trees and areas where the grounds are far less tended to.

EXISTING LANDSCAPE
The front yard of the campus is those grounds associated with the Main Building, Health Sciences Building, and parking areas. The landscaping in this area is a combination of lawn areas punctuated with shade trees and shrubbery in river rock bedding adjacent to the building. The landscaping in this area is well maintained and ordered, but the lawn areas require considerable water and maintenance. The large lawn area to the north of the building is used for graduation commencement, but the lawn area to the east is undefined.

The back yard surrounds the Stables and Fair Street House Buildings. This area has very few trees and the ground cover is a mixture of grass and stubble. Considerably less attention is being paid to this area and consequently it distinguishes itself from the rest of campus. Providing lawn and landscaping in front of the Fair Street House would help to create a more inviting entry and help to cool the area. Water use in this area is minimal.

IRRIGATION NEEDS
The existing irrigation system has been having problems with tree roots breaking the pipes. This problem appears to be consistent and requires considerable time devoted to corrective measures. A solution to this problem would be to consider alternative landscaping. Similar to the Walla Walla Campus, the desire also exists to make the Clarkston Campus an example of proper water management. In order to achieve this, there must be a concerted effort to reduce the overall irrigation needs of the campus, or at least have the water become significantly more useful through recycling. Landscaping must play a significant role in this quest. The shrubbery adjacent to the building receives the run-off rainwater from the roof because the building is without gutters. This is a good example of water recycling. The lawn areas, however, require a considerable amount of moisture to remain healthy. Irrigation needs could be greatly reduced by removing portions of the lawn where its use is not well defined and replacing it with alternative ground cover, drought tolerant plants and/or rock gardens. The large parking areas capture a considerable amount of water which is channeled to drywells for ground percolation. This water is essentially wasted.

DROUGHT TOLERANT & NATIVE PLANTS
In order to reduce water use while still maintaining a beautiful campus, the implementation of drought tolerant and native plants should be pursued. Converting higher maintenance lawn areas to native grass and sedges, or drought tolerant shrubbery, will reduce the overall water consumption. Planting appropriate grasses, shrubs, and trees in newly created bio-filtration swales will help to recycle the water running off of the parking areas and buildings. An adjustment to the parking drainage system would be needed to make this possible as previously mentioned. The same issues regarding native plants in the Landscaping & Irrigation section of the Walla Walla Campus apply here as well.

SUMMARY
The basic water conservation principles presented by the Walla Walla Watershed Alliance & Fountainhead Irrigation for improvement to the Walla Walla Campus also apply to the Clarkston Campus. The suggestion to prioritize certain lawn areas for critical water use, while modifying other areas to become landscaping requiring little, if any irrigation, has considerable merit and should be pursued.
suggested improvements

1. The Commencement lawn and child-related play areas need to remain due to their specific and important use.

2. Retain as many shade trees as possible, but remove the turf beneath them so irrigation lines are not needed close to their roots. These zones could then be mulched with bark.

3. Reclaim as much storm water as possible from the impervious surfaces through bio-filtration and landscaping.

4. Adjustments are needed to the irrigation system so that constant maintenance is unnecessary.

Left Top: Building upon the idea of sloping the ground plane, one can incorporate locations for students to relax and study in a serene campus environment.

Left Middle: Layering the landscaped elements creates opportunities for chance interaction and a larger campus feel.

Left Bottom: Creating a quad between multiple campus buildings through hard and soft surfaces can energize campus and become a student hangout.
Due to the significant amount of impervious surfaces on the campus, there is need for careful planning and design to improve the surface water management. The following are important issues regarding surface water drainage:

EXISTING SURFACE WATER DRAINAGE

The Clarkston Campus surface water drainage systems can be divided into three categories: landscaping areas, parking areas/roadways, and buildings.

The landscaped areas receive moisture from both rainwater and irrigation. The only times when these areas have difficulties is when the amount of moisture exceeds the capacity of the landscaping (soils) to contain it. These events could occur during extreme conditions, or if excessive run-off is directed onto the landscaping.

For the most part, the parking areas and roadways presently sheet flow into catch basins and drywells for percolation. The roadway and a couple of the smaller parking areas primarily drain onto adjacent soils.

The buildings distribute the rainwater that falls on them in a variety of ways. The main building merely allows the water to drip onto adjacent landscaping. Other buildings have gutters and downspouts which direct the flow to point discharges at grade. The main building handles storm water run-off in a low-tech and elegant way.

PROBLEMS WITH EXISTING CONDITIONS

For the most part, there are very few surface water problems with the landscaped areas, parking lots, or buildings. The main parking lot wastes water by directing all of the run-off into a catch basin and drywell system. Oil and water separators are minimal and need to be improved.

Until recently, the state of the art for surface water drainage was engineered collection systems with subsurface percolation. This method is now seen to be problematic due to the inevitable siltation that plagues these systems and the lack of any removal of hydrocarbons or other impurities. The current environmentally preferred method for dealing with surface water is to utilize bio-filtration swales within landscaping areas. These work best in association with smaller parking areas which have adequate drainage slope and dispersed roof drainage systems. Essentially, smaller and less concentrated drainage patterns are desirable for both parking areas and buildings.

POSSIBLE SOLUTIONS

There are a couple of ways to improve the current situation regarding surface water drainage. Reconfiguration of the main parking lots into smaller areas with drainage zones utilizing bio-filtration landscaping would greatly reduce water waste. The designs for these systems would have to be based on the latest data for a 25 year storm event. By allowing landscaping to use and filter run-off from the buildings and parking lots, water is essentially being recycled. This then has the potential to greatly reduce the needs for irrigation. These adjustments could be coordinated with other site improvements to landscaping, parking and pathways.

SUMMARY

For the most part, there are very few surface water problems with the landscaped areas, parking lots, or buildings. The main parking lot wastes water by directing all of the run-off into a catch basin and drywell system. Oil and water separators are minimal and need to be improved.
suggested improvements

1 Introduce landscaping areas within the central parking lot for better control of surface water.

2 Install oil & water separators at the existing catch basins in the parking lots.

3 Distribute the parking areas so that sufficient landscaping is provided to bio-filtrate the run-off.

4 Consider converting concentrated points of discharge from roofs into sheet flow or drip areas.
The Clarkston Campus is served by electrical, data, sewer, water, and gas utilities. These utilities provide vital infrastructure necessary to keep the buildings functioning and serving the students and faculty. The following elements are of important concern to the future development of the Clarkston Campus:

ELECTRICAL SERVICE
The Clarkston Campus is provided with electrical service from several locations. The main building is served by an electrical line from Bridge Street to the central switchgear room located on the north side of the building. The other buildings are independently served from Fair Street. There have been consistent problems with the electrical service to the main building and they appear to reside with the power company. Some of the issues have been resolved by the power company but not all.

GAS SERVICE
Most of the Clarkston Campus buildings are provided with natural gas service. No deficiencies appear to exist in the present system.

WATER SERVICE
The entire campus is adequately served by domestic water lines. Water mains are located under Bridge Street, 15th Avenue and Fair Street. The main building and Health Sciences Building are served from 15th Avenue and the other buildings are served from Fair Street.

SEWER SERVICE
All of the Clarkston Campus buildings are connected to the City of Clarkston sewer system. At this time, no inadequacies have been noted or discussed.
Suggested Improvements

1. There are two abandoned wells on the campus which should be investigated to determine the possibility of their use in irrigation, if water rights are still available.

2. Further investigation and discussion is needed with the power company to determine solutions to the power interruptions.
improvements summary
Clarkston Campus

Funding Project

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental</td>
<td></td>
</tr>
<tr>
<td>P = Private</td>
<td></td>
</tr>
<tr>
<td>L = Local</td>
<td></td>
</tr>
<tr>
<td>S = Students</td>
<td></td>
</tr>
<tr>
<td>G = Grant</td>
<td></td>
</tr>
<tr>
<td>SC = State Capital</td>
<td></td>
</tr>
<tr>
<td>O = Operating Budget</td>
<td></td>
</tr>
<tr>
<td>COP = Cert. of Participation</td>
<td></td>
</tr>
<tr>
<td>U = Unknown</td>
<td></td>
</tr>
<tr>
<td>F = Facility Use Fund</td>
<td></td>
</tr>
</tbody>
</table>

Continuing Improvements

- CL Campus Barrier-Free Improvements
- CL Campus Technology Improvements
- CL Electrical Systems Improvements
- CL Energy Efficiency Improvements
- CL Storm Water System Improvements
- CL Signage Improvements
- CL Fire & Life Safety Improvements
- CL Landscaping Adjust. (Native Plants)

10 Year Goals

- SC Increased Parking
- SC Workforce and Business Development Center
- SC Main Pedestrian Path
- SC Tie Campus Together with Pedestrian Walkways
- CL Potential Lease Property

20 Year Goals

- SC Future Buildings
- COP, L Potential Expanded Campus Footprint
- O,S Undeveloped Campus Footprint
- Future Vacation of Fair Street
WALLA WALLA CAMPUS

The following is an inventory of the Walla Walla Community College buildings located on the Walla Walla Campus and the Clarkston Campus. Of the buildings included, a few stand out due to their condition and special circumstances.

The following buildings on the Walla Walla Campus have been rated in the survey as "Needs Improvement Through Additional Maintenance":

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Bldg. No.</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Training Center</td>
<td>200V</td>
<td>@ 278</td>
</tr>
<tr>
<td>Farrier Building</td>
<td>200N</td>
<td>@ 302</td>
</tr>
<tr>
<td>Vocational/Technology Building</td>
<td>200J</td>
<td>@ 322</td>
</tr>
<tr>
<td>Greenhouse Building</td>
<td>200Q</td>
<td>@ 346</td>
</tr>
<tr>
<td>Hitting Facility</td>
<td>200PEX</td>
<td>@ 392</td>
</tr>
<tr>
<td>Main Building</td>
<td>200D 1-5</td>
<td>@ 278</td>
</tr>
</tbody>
</table>

The main building (200D) has had an addition, been remodeled and has a new roof over 99% of the facility. These changes will reduce the score to 274, giving it an "Adequate" rating. Its list of deficiencies, damper replacement, kitchen hood modifications, circulation pump replacement, and VAV box replacements have either been completed, partially completed or are scheduled to be completed in the 2015-17 biennium. Power distribution systems will still require upgrades.

The Greenhouse on the Walla Walla Campus requires a new HVAC system to be functional and is currently used for storage. It is in the wrong location to serve the College’s need for a greenhouse.

CLARKSTON CAMPUS

The Clarkston Campus includes several buildings constructed in 1955 through 1957 that were not originally intended for use as part of a college campus. The Fitness Center, Maintenance Shop, Stable Storage Building and the Child Care Center have all been identified in the 2013 Report as needing replacement.

The buildings on the Clarkston Campus that are listed in the survey as "Needs Improvement Through Additional Maintenance or Replacement" include:

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Bldg. No.</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair Street House</td>
<td>200FSH</td>
<td>236</td>
</tr>
<tr>
<td>Child Care Center</td>
<td>200PCC</td>
<td>442</td>
</tr>
<tr>
<td>Maintenance Shop</td>
<td>200CMS</td>
<td>456</td>
</tr>
<tr>
<td>Fitness Center</td>
<td>200CFC</td>
<td>526</td>
</tr>
<tr>
<td>Stable Storage Building</td>
<td>200CST</td>
<td>574</td>
</tr>
</tbody>
</table>

The Fair Street House has been remodeled numerous times and does not function well due to these additions. The Fitness Center has been converted from a Veterinarian Office to a Weight Training Room and does not serve that function well. The Maintenance Shop is an old garage with a unit heater, poor lighting, no storage and no insulation. It is not of sufficient size to serve the needs of the College. These facilities on the Clarkston Campus have been identified as potential buildings to be replaced.
Building Condition Rating Summary

WALLA WALLA COMMUNITY COLLEGE

<table>
<thead>
<tr>
<th>Facility #</th>
<th>Facility Name</th>
<th>Gsf</th>
<th>Site</th>
<th>2013 Score</th>
<th>2011 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>200E</td>
<td>Health Science/Performing Arts (RRR)</td>
<td>36,164</td>
<td>Walla Walla Campus</td>
<td>146</td>
<td>158</td>
</tr>
<tr>
<td>200D6-7</td>
<td>Basic Skills & Culinary/Student Center</td>
<td>26,743</td>
<td>Walla Walla Campus</td>
<td>158</td>
<td>158</td>
</tr>
<tr>
<td>200R</td>
<td>Water Center (WWW)</td>
<td>10,751</td>
<td>Walla Walla Campus</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>200T</td>
<td>Center for Enology & Viticulture (EEE)</td>
<td>15,000</td>
<td>Walla Walla Campus</td>
<td>162</td>
<td>158</td>
</tr>
<tr>
<td>200B</td>
<td>Parent-Child Center (JJJ)</td>
<td>2,500</td>
<td>Walla Walla Campus</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td>200CHS</td>
<td>Clarkston Health Sciences</td>
<td>8,900</td>
<td>Clarkson Center</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td>200F</td>
<td>Technology Center (TTT)</td>
<td>26,085</td>
<td>Walla Walla Campus</td>
<td>198</td>
<td>218</td>
</tr>
<tr>
<td>200CLK</td>
<td>Clarkston Center</td>
<td>44,896</td>
<td>Clarkson Center</td>
<td>214</td>
<td>218</td>
</tr>
<tr>
<td>200P</td>
<td>Applied Technology Training Center (ATT)</td>
<td>10,802</td>
<td>Walla Walla Campus</td>
<td>218</td>
<td>178</td>
</tr>
<tr>
<td>200K</td>
<td>Child Care Center (KKK)</td>
<td>6,390</td>
<td>Walla Walla Campus</td>
<td>222</td>
<td>194</td>
</tr>
<tr>
<td>200L</td>
<td>Ag Mechanics 1 (MMM)</td>
<td>10,080</td>
<td>Walla Walla Campus</td>
<td>258</td>
<td>298</td>
</tr>
<tr>
<td>200M</td>
<td>Ag Mechanics 2 (NNN)</td>
<td>14,672</td>
<td>Walla Walla Campus</td>
<td>266</td>
<td>302</td>
</tr>
<tr>
<td>200A</td>
<td>Dietrich Activity Center (DDD)</td>
<td>38,500</td>
<td>Walla Walla Campus</td>
<td>270</td>
<td>258</td>
</tr>
<tr>
<td>200D1-5</td>
<td>Phase 1 (AAA 1-5)</td>
<td>199,967</td>
<td>Walla Walla Campus</td>
<td>274</td>
<td>278</td>
</tr>
<tr>
<td>200U</td>
<td>Auto Training Center (PPP and QQQ)</td>
<td>8,960</td>
<td>Walla Walla Campus</td>
<td>273</td>
<td>278</td>
</tr>
<tr>
<td>200FSH</td>
<td>Fair Street House</td>
<td>4,400</td>
<td>Clarkson Center</td>
<td>296</td>
<td>284</td>
</tr>
<tr>
<td>200N</td>
<td>Farrier (FFF)</td>
<td>9,995</td>
<td>Walla Walla Campus</td>
<td>302</td>
<td>282</td>
</tr>
<tr>
<td>200J</td>
<td>Vocational/Technical (LLL)</td>
<td>55,819</td>
<td>Walla Walla Campus</td>
<td>322</td>
<td>354</td>
</tr>
<tr>
<td>200Q</td>
<td>Greenhouse (GGG)</td>
<td>4,000</td>
<td>Walla Walla Campus</td>
<td>390</td>
<td>280</td>
</tr>
<tr>
<td>200PEX</td>
<td>HPER Annex Hitting Facility</td>
<td>5,500</td>
<td>Walla Walla Campus</td>
<td>392</td>
<td>392</td>
</tr>
<tr>
<td>200PCC</td>
<td>Clarkston Child Care Center</td>
<td>3,376</td>
<td>Clarkson Center</td>
<td>442</td>
<td>442</td>
</tr>
<tr>
<td>200CMS</td>
<td>Clarkston Maintenance Shop</td>
<td>785</td>
<td>Clarkson Center</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>200CFC</td>
<td>Clarkston Fitness Center</td>
<td>1,800</td>
<td>Clarkson Center</td>
<td>520</td>
<td>560</td>
</tr>
<tr>
<td>200CST</td>
<td>Stable Storage Building</td>
<td>1,500</td>
<td>Clarkson Center</td>
<td>574</td>
<td>550</td>
</tr>
</tbody>
</table>

Total GSF and Weighted Average Score: 547,785 252

146 - 175 = Superior
176 - 275 = Adequate
276 - 350 = Needs Improvement Through Additional Maintenance
351 - 475 = Needs Improvement Through Renovation
>475 = Replace or Renovate
dietrich activity center
Building #19 - 200A

GENERAL DESCRIPTION & HISTORY

This 38,500 s.f. building was constructed in 1977. The building is a partially earth sheltered geodesic dome, situated to the west of the main building complex. It is surrounded by lawn and landscaping and has four equally spaced entries at the perimeter. This is the home for most sports related activities and events including basketball, volleyball, weight training, fitness, Racquetball, and dance. The main basketball/volleyball court(s) occupy the center of the structure, with support elements such as weight lifting, fitness, and locker rooms surrounding it on the main level. Dance and office rooms are located on the second floor, with balcony and bleacher views down to the main court.

STRUCTURE & EXTERIOR CONSTRUCTION

The building is composed of a concrete and steel superstructure, with the exterior walls mostly bermed concrete and the roof composed of a steel framed geodesic dome with a gold anodized steel shell. The windows and entry doors are aluminum frames with insulated glazing. There are a few openings allowing light to enter at what could be considered the second floor. The second floor level is a concrete floor with concrete masonry and steel support walls.

MECHANICAL / ELECTRICAL / PLUMBING

The building is served by several mechanical HVAC units, located equally around the perimeter. The electrical service room is located on the main level at the east side. Plumbing service lines are copper, drain lines could not be seen to determine their composition. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems, however, the domestic water heater seems to take up a considerable amount of space and should be replaced with a more energy efficient one. The building is served by a fire alarm system, but does not have a fire sprinkler system. Five new 200 gallon gas boiler heaters 98% efficient, 4 HVAC, 1 domestic.

INTERIOR CONSTRUCTION

The interior walls are mostly unpainted concrete masonry, with gypsum board on steel stud walls in areas where impacts are not a concern on the second floor. The main floor is wood at the central court, carpet in the fitness room, rubber mats in the weight training area and carpet, and exposed concrete in the locker rooms. The second floor has carpeting, exposed concrete and a wood floor in the dance hall. Ceilings are composed of a combination of gypsum board and exposed structure. A durable rigid fiberglass shell liner was installed in 1980 on the inside of the dome to conceal and protect the insulation. The mechanical ductwork still has exposed insulation in many areas. Interior doors are hollow metal with hollow metal frames. Laundry updated, lighting retrofit, 500w MH from 1000w. All air handlers replaced. Electric heat replaced with gas. A/C from main building chilled water.

AIR QUALITY & HAZARDOUS MATERIALS

Although no obvious hazardous materials or environmental air quality problems were noticed, it has been quite a while since the ductwork has been inspected and/or cleaned. It would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. It would not be a bad idea to add a few exhaust fans in the weight training room and locker rooms. Asbestos Contaminated Materials (ACM) was not immediately seen to be present.

BARRIER FREE ACCESS

Entries and exits from the building, along with corridors and locker rooms are in general compliance with ADA and State of WA accessibility codes, except that handicap assist door openers are needed on the entry doors. The toilet rooms are not in compliance. Clearances around fixtures are inadequate and entries do not have the required jamb configuration. The drinking fountains are also not barrier free, as well as the elevator. No possibility for ADA on the west nor east side. Operator being installed, working on making it compliant.
suggested improvements

1. The electrical circuits should be checked and identified.
2. The occupancy of this building suggests the need for an emergency power source which would allow safe egress for participants and spectators during a power failure. *Battery back exit lights.*
3. The stair treads are significantly worn in many places and need to be replaced. *Not completed.*
4. The carpeting is worn in many places. *Not replaced.*
5. The toilet rooms are not in compliance with the State of WA and ADA barrier free codes.
6. The elevator does not meet current ADA and State of WA barrier free codes. *Works good.*
7. Drinking fountains do not meet ADA and State of WA barrier free codes.
8. The water heater is old and inefficient. *Replaced.*
9. Door assists are needed on the entry doors.

requested improvements

The following items were suggested or requested by faculty and/or staff:

1. Additional space is needed for weight training.
2. Better acoustical separation is needed around the Dance Hall on the second floor. *Completed.*
3. Roof seals and roof drains need repair. *Underground drains around the building. Reseal all the joints and check the drains.*
4. The shower trees in the locker rooms need to be replaced.
5. Replace the hot water tank.
6. Replace the toilets and add auto flush devices. *Done.*
7. Repair the leaks in the water supply lines under the men’s showers.
8. Replace the older HVAC equipment.
9. *Water in the building is a condensation issue.*
parent child center
(Building #20 - 200B)

GENERAL DESCRIPTION & HISTORY
The 2,500 s.f. Parent - Child Center Building was recently constructed (June 2003). This was a significant improvement and the new center is performing quite well for the intended purpose.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story and constructed similar to a single-family residence. The structure is composed of wood framed walls and roof, with exterior siding and stone veneer accents. The building has an asphaltic composition shingle roof and a concrete slab floor.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a multi-zone gas / electric HVAC split system. The building is served by a fire alarm system and a fully functioning fire alarm system. The plumbing components and assemblies are all in good working condition and appear to meet the needs of the occupants. Residential system clean ductwork.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on wood studs. The floors are mostly covered by vinyl composition tiles, with ceramic tile used in the toilet rooms. Ceilings are composed primarily of painted gypsum board.

AIR QUALITY & HAZARDOUS MATERIALS
With this building being so recently built and in compliance with current codes, we believe it unlikely these issues will be found. Asbestos Contaminated Materials (ACM) was not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building, along with toilet rooms and play areas, are in general compliance with ADA and State of WA accessibility codes, except that the main entry does not have an automatic opener.

suggested improvements

1. An automatic door opener should be installed on the main entry door.

requested improvements

1. Additional meeting and office space is desired.
2. A larger reception area is desired.
women’s center (Building #2 - 200C) to be demolished

GENERAL DESCRIPTION & HISTORY
The 1,644 s.f. Women’s Center Building was constructed in 1975 and consists of three modular buildings connected together and opened in the interior. It is located to the southwest of the Education Center and to the east of the Parent - Child Center (Building #20). A small parking area exists to the west of the building.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is a single story structure with wood framing and trusses, metal siding and roofing and parapet wall extensions. The structure has a wood subfloor and joists and is set on concrete foundation walls. Windows are aluminum framed with non-insulated glass. The entry and exit doors are hollow metal with hollow metal frames.

MECHANICAL / ELECTRICAL / PLUMBING
The building has a very limited mechanical system, which does not adequately serve the present use of the building. The building has a fire alarm system, but not a fire sprinkler system. Plumbing and electrical service systems appear in reasonable condition. No HVAC.

INTERIOR CONSTRUCTION
The interior consists of painted gypsum board walls on wood studs, VCT and carpet on the floors and suspended acoustic ceiling tiles. Interior doors are wood with wood frames. Finishes show considerable wear. Building is currently being used for theatre costume storage.

AIR QUALITY & HAZARDOUS MATERIALS
The summer of 2012, WWCC received a report that there is significant mold present in this building. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building are not in compliance with ADA and State of WA accessibility codes, nor are the toilet rooms.

suggested improvements
1 The toilet rooms do not meet the State of WA or ADA barrier free requirements.
2 The entry is not in compliance with ADA.
3 Finishes are quite worn.
4 Lighting fixtures are not energy efficient.
5 The entry door has difficulty closing completely.
6 The HVAC system is not keeping the occupants comfortable.
7 The exterior of the building and specifically the entry area is quite “harsh” in appearance.
8 The offices are very insufficiently sized and awkward due to circulation problems.
9 The carpet seams are worn and unsightly.

requested improvements
1 Replace worn interior finishes including the carpeting.
2 Replace or repair entry door.
3 Make improvements to the heating and cooling system.
4 Make improvements to the building exterior so that it does not look so industrial.
5 The offices are too small.
main building
(Building Portions #1, #1A, #3, #4 & #5 - 200D)

CURRENT BUILDING USE
Building Portion #1: Business Education & Academic Education
Building Portion #1A: Basic Skills & Computer Addition/Remodel
Building Portion #3*: Administration, Library, & Sciences
Building Portion #4: Conference Center
Building Portion #5: Bookstore
*(The Women’s Center has been previously designated as Building #2)

GENERAL DESCRIPTION & HISTORY
The Main Building is comprised of several building portions built at different times. The original structure was built in 1974 and constituted about three quarters of the current building area. The character of the building was retained each time an addition was constructed, so that the present configuration appears as one structure without distinction between additions.

Remodels completed in 2007 and 2010 added 26,743 s.f. to the west end of the Main Building for use as Basic Skills Classrooms (07) and a Culinary Student Center (10). The additions include a dining room and exterior patio overlooking Titus Creek. This addition solved the problems with the kitchen hoods and the formerly cramped space for Culinary Arts. A state-of-the-art kitchen was included which handles catering and school lunches as well as providing meals for WWCC students. The kitchen is used 24/7.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a concrete and steel superstructure, with the exterior walls clad with plaster or exterior insulation and finish system (EIFS). The entire building has been reroofed using a single ply membrane. The windows and entry doors are aluminum frames with insulated glazing.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a 4-pipe hydraulic mechanical HVAC system, with boilers and chillers located in the basement, as well as gas fired DX units located on the roof. The electrical service room is also located in the basement. Plumbing service lines are copper, drain lines appear to be cast iron. No leaks or malfunctions were noticeable with the existing systems. The building is served by a fire alarm system and all areas have been retrofitted with sprinklers. The fire alarm annunciator panel, fire department hook-up and post indicator valves are not near each other. The main electrical feed for most of the campus comes into Building 200D. The main feed has failed on several occasions and has recently failed (12/24/13) and needs to be reviewed for replacement. The distribution panels are approximately 38 years old and are in need of replacement. Change to VAV as funds allow.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on metal studs. The first and second floors are mostly carpeted, with ceramic tile used in the toilet rooms. The basement has been left mostly unfinished except for the Graphics offices. Ceilings are composed of a combination of suspended acoustic ceiling tiles (4' x 4’), gypsum board and exposed structure.

AIR QUALITY & HAZARDOUS MATERIALS
Although no obvious hazardous materials or environmental air quality problems were noticed, it has been quite a while since the ductwork has been inspected and cleaned. It would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building, along with corridors and classrooms, are in compliance with ADA and State of WA accessibility codes. The basement classroom (Audio room) is not accessible. The toilet rooms have varying degrees of compliance. Most have been recently improved with grab bars and other interior accessibility
The ceiling tiles in various locations need to be replaced. If 4' x 4' tiles are used, there are limited choices. One possibility would be to use Armstrong “Optima – Open Plan”. These tiles have a NRC of .95, a light reflectance of .89 and are moisture, impact, and sag resistant.

Improve HVAC ducting to allow office walls to extend to underside of decking to create better sound separation. Planned for the 15-17 Biennium.

The electrical service needs better circuit identification.

The second floor guardrail does not meet current requirements (42” high and containment of 4” sphere).

Better energy efficient lighting would be desired. The entire campus has been retrofitted with T-8 lamp and electronic ballasts.

The mechanical system creates noises for the cafeteria and conference areas, as well as for a few of the classrooms at the eastern end of the building (above the main boiler room). Resolved by the new Culinary Department.

Magnetic hold-opens are needed on the doors to rooms #185C & #181.

Verify the need for a thorough duct cleaning. Not practical. high volume of air 97% efficient filters.

The “Warrior’s Knee” area on the first floor presents a hazard for the visually impaired as stated above.

The railing on the second floor at the east end of the building needs an intermediate railing to meet current codes.

A railing is required on both sides of the ramp in the corridor at the second floor.

A thorough review of fire & life safety code compliance is recommended to determine the extent of changes needed to the building to meet current fire and life-safety codes. These adjustments may include fire rated corridors and corridor doors, fire sprinklering the entire building, and the need for occupancy or area separation walls.

Electrical phase protection is needed, with fault indicators. Replace a fan motors with VFD.

The well water circulation associated with the mechanical system should be inspected to determine if sediment is affecting the piping. Investigate the option to hook up a chiller apparatus to the mechanical system using the well water as a heat sink with a heat exchanger so that the well water cannot enter the hydronic piping system. Repaired. Two new 300 ton chillers and new heat exchangers, 2005-6. Closed 100P. Just air cooling, water goes to the irrigation system.

The fire alarm annunciator panel should be moved closer to the post indicator valve, and an additional fire department hook-up should be installed near this valve. Two gas fired boilers for heat.

Provide auto-assist door openers at the main entry doors. Completed.

Dome ducts cleaned once.
technology center
(Building #18 - 200F)

GENERAL DESCRIPTION & HISTORY
This 26,000 s.f. building was constructed in 1991. It currently contains the Computer Tech., Water Management, Refrigeration and Air Conditioning Technology, Turf Management, Ag Science, and Tech. programs. The building is situated on the north side of the campus and has the advantage of access from both the north and south sides. Due to the topography in this area, the building has access to both floors at grade. There is a service drive to the north which accesses the upper floor and a small parking lot to the east which serves the entries to the south and east.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a concrete and steel structure, with the exterior walls being a combination of painted concrete masonry and exterior insulation and finish system (EIFS). A predominant portion of the building has built-up roofing, with the central second floor hallway being covered by sloped metal roofing. The windows and entry doors are aluminum frames with insulated glazing. There are a few openings that contain glass block.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a single central mechanical HVAC unit, located on the first floor, with zone dampers. The electrical service room is located next to the mechanical system in a separate room. Plumbing service lines are copper, drain lines appear to be cast iron. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems, however, the mechanical has difficulty managing the different heating and cooling loads. Essentially, the building has zoning problems and is not energy efficient or comfortable. The building is served by a fire alarm system, as well as a complete fire sprinkler system. Air handler, one boiler, one chiller, new VAV boxes with new dampers. Replace boiler this biennium, new fan motor VFD control. Still has zoning problems but 90% better due to HVAC modifications. Consistent air volume.

INTERIOR CONSTRUCTION
The interior walls are painted gypsum board on metal studs and exposed unpainted concrete masonry in the central corridor. The first and second floors are mostly carpeted, with ceramic tile used in the toilet rooms. Ceilings are composed of a combination of suspended acoustic ceiling tiles (2’ x 4’), gypsum board and exposed structure. Doors are hollow metal with hollow metal frames and appear to have required fire ratings and wired glass.

AIR QUALITY & HAZARDOUS MATERIALS
Although no obvious hazardous materials or environmental air quality problems were noticed, it has been quite a while since the ductwork has been inspected and/or cleaned. It would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building, along with corridors and classrooms are in general compliance with ADA and State of WA accessibility codes, except that handicap assist door openers are needed on the main entry doors. The toilet rooms are not in complete compliance. The vanities are too high and the traps need to be insulated. Not corrected. The drinking fountains have been made handicap accessible by removing a portion of the walls below them.
suggested improvements

1. The ceiling tiles in various locations need to be replaced. *Most replaced.*
2. The HVAC system zoning is inadequate and the ductwork is quite noisy. A complete review of alternative solutions is necessary. *Somewhat better.*
3. There are several windows with the seals broken, allowing moisture to enter the air space. *Windows replaced last year leak in stairwells - repaired.*
4. The stair railings and second floor guardrails do not meet current requirements (containment of 4” sphere).
5. A couple of glass blocks are cracked. *Repaired.*
6. Efflorescence is visible on the interior of the concrete masonry in many places. Moisture has found a way to penetrate through the block. It has been suggested that this occurred immediately after construction due to “green” concrete masonry. Even so, the window frames and coping at the top of the block should be checked for worn or incorrectly applied sealant. *99% resolved.* The elastomeric coating on the concrete masonry exterior should also be carefully checked for problems.
7. The carpeting in many places shows significant wear. *Not covered by the State.*
8. Verify the need for a thorough duct cleaning. *1120 1121 (Maintenance) - two rooms replaced.*
9. Railings are needed at the steps on the west side of the building to comply with current codes.
10. The lighting does not appear to be energy efficient.
11. The toilet rooms need adjustments to meet ADA and State of WA barrier free codes.

requested improvements

12. Ductwork should be inspected to verify the need for cleaning. *Yes - light commercial ductwork.*

building inventory

1. Additional space is needed for Turf Management storage.
2. The building is uncomfortable due to HVAC zoning problems.
3. Lighting upgrades are desired for better energy efficiency. *Completed.*
 HEALTH SCIENCE & AUDITORIUM
(BUILDING #25 - 200E)

GENERAL DESCRIPTION & HISTORY
This 34,000 sq. ft. building went under construction in the winter of 2006. It contains the Health Science programs. The building is situated on the north side of the adjacent Technology Center. The building is a two story structure with views southward of the rest of the campus and Blue Mountains. Parking lots are intended to the north and west, with a total number of parking stalls to be around 200.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a concrete and steel structure, with the exterior walls being mostly concrete masonry with brick veneer. The building has a single-ply roof. The windows and entry doors have aluminum frames with insulated glazing.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by two 4-pipe hydronic systems with gas fired boilers and electric chillers. The electrical service room is located next to the mechanical systems in separate rooms. Plumbing service lines are copper, drain lines appear to be cast iron. The building is served by a fire alarm system, as well as a complete fire sprinkler system.

INTERIOR CONSTRUCTION
The interior walls are painted gypsum board on metal studs, with exposed brick in the central corridor, and wood paneling in the auditorium. The first and second floors are mostly carpeted, with ceramic tile used in the toilet rooms. Ceilings are composed of a combination of suspended acoustic ceiling tiles (2’ x 4’), gypsum board and, in some places, exposed structure. Doors have hollow metal and/or wood with hollow metal frames and have required fire ratings and wired glass.

AIR QUALITY & HAZARDOUS MATERIALS
There were no hazardous materials or asbestos contaminated materials used in the construction of this building.

SUGGESTED IMPROVEMENTS

1. Eventually, there will be a strong need for a practice stage with additional shop space. This is anticipated to be added at the north side of the backstage area.

2. Consideration of the use of brick should be re-examined for compatibility with the rest of the campus. Concrete masonry would be a better fit and less expensive. The saved expense could be spent on the practice stage.

REQUESTED IMPROVEMENTS

1. A practice stage with additional shop space is required to support use of area for theatre productions.

BARRIER FREE ACCESS
It appears that all entries and exits from the building, along with corridors, classrooms, and toilet rooms are in full compliance with ADA and State of WA accessibility codes.
china pavilion
(Building #10 - 200G) to be demolished

The 10,400 s.f. China Pavilion structure is currently being used for the Performing Arts program.

GENERAL DESCRIPTION & HISTORY
The China Pavilion derives its name from the fact that it was originally constructed for the 1974 Spokane World’s Fair by and for the Chinese government. The original use was as a projection theater showing a slide and film presentation about Chinese history, art, culture, and geography. The structure was relocated to the WWCC campus in 1975 and placed over a poured-in-place concrete slab. This slab was sloped to better accommodate a performing arts program, including a stage with minimal backstage area and no flies. The seating was arranged to better envelope the stage area while still using the original chairs.

STRUCTURE & EXTERIOR CONSTRUCTION
The building shell is composed entirely of precast concrete and is shaped in the form of a fan. The roof and roof supporting end walls are composed of concrete “T” beam sections spaced about 4’ on center at the narrow end and about 10’ on center at the wide end. The side walls are composed of flat precast concrete panels, each about 10 feet wide. Other than the entry and exit doors, there are no openings in the perimeter. An exterior insulation and finish system (EIFS) was applied to the exterior of the Pavilion in the mid-90’s to improve its appearance and thermal efficiency. The unusual shape of the building will have a strong influence on most interior layouts.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served with gas/electric mechanical HVAC units located on the exterior at the wide end of the “fan” with ductwork under the slab and at the underside of the roof. The plumbing is fairly minimal and only serves the public toilet rooms and set shop. The electrical system appears adequate for a variety of new uses. There are fire alarm system and fire sprinkler systems. Further study would be required for all systems depending upon the new use of the building. Rooftop units have been replaced with Carrier 80% efficient - Need replaced.

INTERIOR CONSTRUCTION
Most of the interior construction is exposed structure (walls and roof), with some interior walls composed of painted gypsum board on steel or wood studs. The floor is primarily carpeted and minimally sloped in the seating area. The stage area is composed of a plywood floor on wood framing.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were noticed. It would be a good idea to completely clean, or install new ductwork when the building is remodeled. No Asbestos Contaminated Materials (ACM) were observed.

BARRIER FREE ACCESS
Any interior remodeling intended for the building would require complete compliance with current State of WA and ADA barrier free codes. Not done.

suggested improvements
Not Applicable

requested improvements
Not Applicable
professional technical
building
(Building Portions #6, #7, #8 & #9 - 200J)

The 53,861 s.f. Professional Technical Building is currently being used for the following:

| Building Portion #6: Music Center |
| Building Portion #7: Auto Body & Auto Mechanics Center |
| Building Portion #8: Cosmetology Center |
| Building Portion #9: Welding & Precision Machining Center |

GENERAL DESCRIPTION & HISTORY
The Multi-Use Center building is composed of five building portions originally constructed for the 1974 Spokane World’s Fair. These portions were disassembled and transported to the Walla Walla Community College campus and reassembled and interconnected with additional structures which allow circulation from one portion to the next while remaining indoors. The resulting form is somewhat “U” shaped with the courtyard area facing northeast. This building complex is located to the northeast of the Education Center, adjacent to the China Pavilion (200G) and are flanked on the north and east sides by parking areas. A music-related addition was constructed in 2002 and new roofing over a portion of the connective corridors in 2004.

STRUCTURE & EXTERIOR CONSTRUCTION
The buildings are composed entirely of precast concrete. The roof and supporting end walls are composed of concrete “T” beam sections spaced at about 10’ on center. The side walls are composed of 10’ wide flat concrete panels with the exterior walls clad with an exterior insulation and finish system (EIFS). The building has built-up roofing. The newer Music addition and corridor roofing have single-ply membrane roofs. The windows and entry doors are aluminum frames with insulated glazing. Has BUR been replaced? Yes, solar panels last section last year.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a combination of mechanical systems. Portions #6 & #8 are connected to the four-pipe system from the Main Building. Portions #7 & #9 are provided with suspended gas-powered radiant heat tubes. The electrical service room is located in the southwest portion of the Cosmetology Building portion. Plumbing service lines are copper, drain lines appear to be cast iron. No leaks or malfunctions were noticeable with the existing systems. However, there are leaks on the east side of the exterior wall when it rains. The building is served by a fire alarm system, but only portions of the structure have a fire sprinkler system (building portion #7). Mechanical tunnel, Carrier all the same.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on metal studs. The classrooms and hallways are mostly carpeted with ceramic tile used in the toilet rooms. A couple of the hallways have vinyl composition tile floors. Ceilings are composed of a combination of suspended acoustic ceiling tiles (2’ x 4’), gypsum board and exposed structure.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were observed. Asbestos Contaminated Materials (ACM) were not immediately seen to be present. An air quality study conducted by SCM Consultants in late August 2005 confirmed that all hazards are within the normal acceptance range.

BARRIER FREE ACCESS
Entries and exits from the building, along with corridors and classrooms, are in general compliance with ADA and State of WA accessibility codes. The toilet rooms have varying degrees of compliance. Most have been recently improved with door openers and other interior accessibility features, however, the entries to most of the toilet rooms do not meet State of WA accessibility requirements due to lack of strike jamb clearance (18” needed with closer).
women’s toilet room lacks a handicap sized stall or grab bars. The men’s toilet room lacks the 5’ unobstructed width from wall to sink for side transfer. The doors need lever handles. The drinking fountains are also not handicap accessible. Any upgrades? Some ADA restrooms tank toilets - replace.

1. The ceiling tiles in various locations need to be replaced.
2. The electrical service needs better circuit identification. Completed.
3. A fire sprinkler system is needed in the Welding & Precision Machining area. Needs verification.
4. Single-pane windows should be replaced with ones that have insulated glass.
5. A thorough review of fire/life safety code compliance is desired to determine the extent of changes needed to the building to meet current codes. These adjustments may include fire rated corridors and corridor doors, fire sprinklering the entire building complex and the need for occupancy or area separation walls.
6. The welding area needs improved ventilation. Not provided.
7. Electrical phase protection is needed to the main feeder. Not provided.
8. There are a few roof leaks which need repair. Not completed.

Building inventory

Building inventory...
This 10,530 s.f. building is currently being used for Maintenance Facility Services.

GENERAL DESCRIPTION & HISTORY
Although this building appears similar to those from the 1974 Spokane World’s Fair, it was in fact constructed later but with similar materials and configuration. Unlike the buildings comprising the Professional Technical Center to the north, this structure has a partial second floor. The building is used for maintenance. The addition is used for wind generation technology. The building was remodeled in 2009 to house facilities.

STRUCTURE & EXTERIOR CONSTRUCTION
The building shell is composed entirely of precast concrete. The roof and roof supporting end walls are composed of concrete “T” beam sections spaced about 10’ on center. The side walls are composed of flat precast concrete panels, each about 10 feet wide. The second floor is concrete supported on the concrete masonry and end walls. The entry doors and windows are aluminum framed with insulated glass. An exterior insulation and finish system (EIFS) was applied to the exterior in the mid-90’s to improve it’s appearance and thermal efficiency. The building is covered with a built-up roofing system.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served with an antiquated split system which would need to be completely reconfigured for any new use. The plumbing systems are fairly minimal and only serve the public toilet rooms and areas of the second floor nursing lab. The electrical system appears salvageable for a variety of new uses. There is a fire alarm system but no fire sprinklers. Further study would be required for all systems depending upon the new use of the building.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were noticed. It would be a good idea to completely clean, or install new ductwork when the building is remodeled. No Asbestos Contaminated Materials (ACM) were observed.

BARRIER FREE ACCESS
Any interior remodeling intended for the building would require complete compliance with current State of WA and ADA barrier free codes.

suggested improvements

1. There are some places on the north exterior wall which show mold growth.
2. Automatic doors are needed at the main entry.
3. The HVAC system appears to need some serious upgrades.
4. The toilet rooms do not meet State of WA and ADA accessibility requirements.
5. The elevator does not meet ADA and State of WA barrier free requirements.

requested improvements
Not applicable.
child care center (Building #17 - 200K)

GENERAL DESCRIPTION & HISTORY
The 6,316 s.f. Child Care Center Building was constructed in 1989. It is located to the northeast of the main building cluster. The building has a drop-off area to the front and parking on the southeast end. There is a large triangularly shaped fenced lawn area to the north (back) and west side for children to play on in good weather. Playground structures occupy areas of the west lawn.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is a single-story structure, composed of wood framed walls and roof, slab-on-grade floor, exterior stucco finish and wood siding below the windows. The building was re-roofed in June of 2004 with new asphaltic composition shingles. The windows are wood-clad and appear to be the originals. Exterior doors are hollow metal with hollow metal frames.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a two-zone gas heat / electric cooling HVAC split system. The building has a fire alarm system, but not a fire sprinkler system. The plumbing and electrical components and assemblies appear to be in reasonable condition.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on wood studs. The floors are mostly covered by vinyl composition tiles and carpeting, with ceramic tile used in the toilet rooms. Ceilings are composed primarily of painted gypsum board.

AIR QUALITY & HAZARDOUS MATERIALS
No air quality problems or hazardous materials were seen to be present. The ducting system would probably benefit from a thorough cleaning. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building are in general compliance with ADA and State of WA accessibility codes, except that there is no handicap accessible curb cut and ramp from the drop-off driveway and there aren’t any door assists at the main entry. The toilet room does not meet the State of WA handicap accessibility codes. Check ramp. Needs new fire alarm system. Local only Simplex.

suggested improvements
1 Electrical circuits need to be identified. Not completed.
2 The wood attic vents are peeling paint, as is the siding below the windows. On-going.
3 The building would benefit from replacing the old wood-clad ones with better sealing vinyl frames with insulated glass.
4 The windows at the main entry appear to have their seals broken.
5 There is no fire sprinkler system.
6 Handicap accessible curb-cut and ramp is needed at the driveway.
7 Automatic door openers are needed at the main entry.
8 The toilet room fails to meet the requirements of the State of WA handicap accessibility codes.
9 The mechanical ductwork should be professionally cleaned. Four residential furnaces, two need to be replaced.

requested improvements
1 New carpeting is desired. Not replaced.
2 Chair rails are desired in the offices.
3 New interior paint is desired. Not repainted.
John Deere Training Center
(Building #12 - AG-1 - 200L)

General Description & History
This 10,000 s.f. building was constructed in 1974. The building is situated to the northeast of the main building complex and is closely associated with the Ag Diesel, Farrier building and Applied Tech Training Center. The arrangement of these buildings form a courtyard area which contains parking, work vehicles and storage containers. The John Deere Training Center is the farthest west of this grouping. There is also a small parking lot used for Agricultural Machinery (John Deere tractors etc.) to the west of the building.

Structure & Exterior Construction
The building is composed pre-engineered steel superstructure with the exterior walls roof covered with steel panels. The building rests on a concrete slab-on grade. The entry doors and overhead doors are steel. There is a second floor at the north end constructed of a reinforced concrete slab on steel deck, supported by the concrete masonry walls below.

Mechanical / Electrical / Plumbing
The building is served by a minimal mechanical HVAC split system, distributing heating and cooling to the classrooms only. The shop area is served by gas fired blowers. Plumbing systems are minimal. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, but lacks a fire sprinkler system. Gas radiant heaters in all Ag. Buildings. T-8 lights. Ag-1 and Ag-2 new roll-up doors 2013.15.

Interior Construction
The interior walls are primarily painted concrete masonry. The first and second floors are mostly exposed concrete, with vinyl composition tile used in the toilet rooms. Ceilings are composed of acoustic ceiling tiles (1’ x 1’) on gypsum board and exposed structure in the main service bays. Doors are hollow metal with hollow metal frames.

Air Quality & Hazardous Materials
It has been quite a while since the ductwork has been inspected and/or cleaned. It would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) were not immediately seen to be present. The oil and water separator needs to be replaced. No bollards. Doors are damaged due to forklift.

Barrier Free Access
The entry and toilet rooms are not in compliance with ADA and State of WA accessibility codes.

Suggested Improvements
1. The ceiling tiles in various locations need to be replaced.
2. The toilet rooms are not in very good condition and the State of WA and ADA barrier free codes are not being met.
3. The front door is seriously faded.
4. Protective bollards should be installed at each corner of the overhead doors and near the entry door.
5. The lighting should be upgraded for better energy efficiency.
6. The carpeting in many places shows significant wear.
7. Verify the need for a thorough duct cleaning.
8. The oil and water separator needs to be replaced. Not done - being done this year.
9. The exterior metal panels are faded.

Requested Improvements
1. Replace all standard and overhead doors.
GENERAL DESCRIPTION & HISTORY
This 14,672 s.f. building was constructed in 1979 and has had a few additions constructed including one which formed the building into an "L" shape in 1996. The building is situated to the northeast of the main building complex and is closely associated with the The John Deere Training Facility, the Farrier Building and Applied Tech Training Center. The Ag. Diesel Building is the farthest northeast building of this grouping. This building was remodeled in 2004.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of pre-engineered steel superstructures with the exterior walls roof covered with steel panels. The building rests on a concrete slab-on grade. The entry doors and overhead doors are insulated steel. There is a second floor at the bend of the "L" constructed of wood joists and plywood, supported by the concrete masonry walls below. A fire rated area separation wall was built to separate the two building portions.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a minimal mechanical HVAC split system, distributing heating and cooling to the classrooms and office. Plumbing systems are minimal. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, but lacks a fire sprinkler system.

INTERIOR CONSTRUCTION
The interior walls are primarily painted concrete masonry. The first and second floors are mostly exposed concrete, with vinyl composition tile used in the toilet rooms. Ceilings are composed of painted gypsum board and exposed structure in the main service bays. Doors are hollow metal with hollow metal frames.

AIR QUALITY & HAZARDOUS MATERIALS
Although no obvious hazardous materials or environmental air quality problems were noticed, it has been quite a while since the ductwork has been inspected and/or cleaned. It would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) were not immediately seen to be present. The carbon monoxide detection system does not appear to be working properly. New roofs. Interior of Farrier Shop remodel. No ADA access.

BARRIER FREE ACCESS
The entry and toilet rooms appear to be in full compliance with ADA and State of WA accessibility codes, except that the women’s toilet room needs a sign on the door.

suggested improvements
1. Protective bollards should be installed at each corner of the overhead doors and near the entry door of the 1979 building portion (north).
2. The lighting should be upgraded for better energy efficiency. Completed.
4. One exterior door is in need of replacement. Replaced.

requested improvements
1. Upgrade the lighting. Completed.
2. Floor mount residential furnaces ducted not cleaned.
farrier building
(Building #14 - 200N)

GENERAL DESCRIPTION & HISTORY
This 10,000 s.f. building was constructed in 1975, is situated to the east of the main building complex and is closely associated with the The John Deere Training Facility, the Ag. Diesel Building and Applied Tech Training Center. The Farrier Building is located just south of Ag. Diesel. A portion of the building at the southern end is used for grounds maintenance activities. One of the biggest horse shoeing programs in the west. 09 remodel - add 50% more. No ADA access. Coal forge.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a pre-engineered steel superstructure, with the exterior walls and roof covered with steel panels. The building rests on a concrete slab-on-grade. The entry doors and overhead doors are insulated steel. There is a partial second floor constructed of wood joists and plywood, supported by steel posts.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a minimal mechanical HVAC unit, distributing heating and cooling to only a few rooms. Plumbing systems are minimal. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, but lacks a fire sprinkler system.

INTERIOR CONSTRUCTION
The interior walls are primarily painted gypsum board on wood studs. The floors are mostly exposed concrete, with vinyl composition tile used in the toilet rooms. Ceilings are composed of painted gypsum board in the toilet rooms and exposed structure in the main service bays and classrooms. There is a fire rated partition separating the offices from the farrier room. Doors are hollow metal with hollow metal frames.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were noticed. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
The toilet rooms have recently been remodeled and are in compliance with ADA and State of WA accessibility codes.

suggested improvements
1 Protective bollards should be installed at the west side of the building to protect it from vehicles. Curbs or wheel stops would also serve this purpose.
2 The lighting should be upgraded for better energy efficiency.
3 Complete the installation of suspended acoustic ceilings in the classrooms.
4 Birds have taken up residence beneath the steel panel above the second floor egress door on the north side of the building. Corrected.

requested improvements
1 Better lighting is desired.
2 Complete the installation of the ceilings.
3 Extend the concrete slab and roof overhang on the east side further south.
applied tech training center
(Building #15 - 200P)

GENERAL DESCRIPTION & HISTORY
This 10,802 s.f. building was constructed in 1996, is situated to the east of the main building complex and is closely associated with the The John Deere Training Facility, the Ag. Diesel and the Farrier Building. The Applied Technology Training Center is located just southwest of the Farrier Building.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a pre-engineered steel superstructure with the exterior walls and roof covered with steel panels. The building rests on a concrete slab-on grade. The entry doors and overhead doors are insulated steel. There is a fire-rated separation wall between the classrooms and shop area.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by heat pumps for the east offices, west classrooms and office. The shop is heated by suspended gas-fired radiant heat. Plumbing systems are minimal. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, but lacks a fire sprinkler system. The building has a carbon monoxide detection system.

INTERIOR CONSTRUCTION
The interior walls are primarily painted gypsum board on wood or steel studs. The floors are mostly exposed concrete, with vinyl composition tile used in the toilet rooms. Offices are carpeted. Classroom ceilings and offices are composed of acoustic ceiling tiles (2’ x 4’), and exposed structure is in the shop area. Doors are hollow metal with hollow metal frames.

AIR QUALITY & HAZARDOUS MATERIALS
Although no obvious hazardous materials or environmental air quality problems were noticed, it has been quite a while since the ductwork has been inspected and/or cleaned.

It would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
The two toilet rooms located next to each other are not in compliance with ADA and State of WA accessibility codes. Both are less than five feet wide from wall to lavatory and, therefore, do not allow for side transfer. The men’s toilet room adjacent to the shop area is in compliance and could be signed for uni-sex.

suggested improvements
1. The ceiling tiles in various locations need to be replaced. Not replaced.
2. Electrical circuits need identification. Confirm.
3. The lighting should be upgraded for better energy efficiency. Completed.
4. Verify the need for a thorough duct cleaning. Yes. needs to be done.
5. Appropriate signage is needed on the various toilet rooms for handicap access compliance.

requested improvements
1. Additional office space has been requested.
2. A lunch room was requested.
greenhouse building (Building #16 - 200Q)

GENERAL DESCRIPTION & HISTORY
The 4,000 s.f. Greenhouse structure was constructed in the mid 1970's. It is located to the east of the main building cluster and just south of Titus Creek. The building has a small parking area to the east. This building is used mostly from January to mid May by Ag. Science.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story and constructed of clear and translucent plastic over a steel framework. The structure is set on a concrete slab-on-grade.

MECHANICAL / ELECTRICAL / PLUMBING
The building has been fitted with a ventilation system, as well as an overhead irrigation system. The building has a fire alarm system, but not a fire sprinkler system. The plumbing and electrical components and assemblies appear to be in reasonable condition. The gas-fired heaters are not adequate, nor is the existing evaporative cooling system.

INTERIOR CONSTRUCTION
The interior partitions, which divide the structure into segments, are composed of the same assemblies as the perimeter.

AIR QUALITY & HAZARDOUS MATERIALS
No air quality problems or hazardous materials were seen to be present. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building are in general compliance with ADA and State of WA accessibility codes, except that there aren’t any door assists at the main entry.

suggested improvements
1. The evaporative cooling system needs to be replaced.
2. The fiber mesh on the west side needs to be replaced.
3. The gas fired heating units are inadequate for the space.
4. New furnaces - 4-5 years old and in poor condition. Replace.

requested improvements
1. Replace the evaporative cooling system.
2. New ventilation and heating controls are desired.
center for enology & viticulture (Building #23 - 2001)

GENERAL DESCRIPTION & HISTORY
This 15,000 s.f. building was constructed in 2003. The building is situated on the northwest corner of the campus and has the advantage of being the prominent structure seen at the intersection of Isaacs Avenue and Tausick Way. Due to the topography in this area, the building has access to both floors at grade. There is parking to the north and west sides of the building which drains into drywells. All access to the parking area is from Isaacs Avenue. A small vineyard is located adjacent to the southwest side of the building.

STRUCTURE & EXTERIOR CONSTRUCTION
The two story building is composed of a concrete and steel structure, with the exterior walls being primarily of an exterior insulation and finish system (EIFS). The building has small trellises on either side of the main entry, a painted wood panel soffit and a clay tile roof which is quite distinctive. There is a southeast facing deck at the main level which has an exposed concrete floor. The windows and entry doors are aluminum frames with insulated glazing.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a four-pipe hydronic system with gas fired boilers, and a chiller located at grade to the south of the building. The electrical service is located in the same basement room as the boilers. Plumbing service lines are copper, drain lines appear to be cast iron. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, as well as a complete fire sprinkler system. Chiller is failing. Old chiller just does the building. On 2, new one for the wine making process.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were noticed. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building, along with corridors and classrooms, are in general compliance with ADA and State of WA accessibility codes, except that handicap assist door openers are needed on the main entry doors. The toilet rooms on the first floor are in complete compliance, but the basement toilet rooms need grab bars.

SUGGESTED IMPROVEMENTS
1. Install grab bars in the basement handicap accessible toilet rooms. Not installed.
2. There appears to be the obvious need for additional storage due to the stacked chairs and tables located in the hallway areas of the basement.
3. The barrel room doors are conducting cold temperatures into the adjacent spaces and could use some improvement to their thermal efficiency. Some better door bottoms could also help. Doors need to be replaced. Change to roll-up.
4. The large wooden doors at the tank room and barrel room are delaminating and need to be replaced.

REQUESTED IMPROVEMENTS
1. Additional barrel storage is needed. The Indoor Batting Cages Building could be used for this purpose if the batting cages are relocated.
2. Greater space is desired for catering and events.
The William A. Grant Water & Environmental Center (WEC) opened on October 12th, 2007. The Phase 2 addition opened Fall 2010. The WEC stands as an example of the region’s commitment of conserving, managing, and enhancing the Walla Walla Watershed. The building itself is evidence of a milestone in progress towards addressing water management and environmental restoration issues.

The William A. Grant Water & Environmental Center at Walla Walla Community College is committed to contributing to the well-being of our regional community by:

- Providing a place for collaborative dialogue
- Fostering and modeling the use of innovative practices
- Promoting and practicing the use of effective partnerships
- Offering educational programs that address 21st Century water and environmental challenges
- Achieving heightened awareness and use of environmentally sustainable practices
- Supporting environmental protection and restoration efforts throughout the region

VISION FOR THE REGION
Motivating us in our efforts is a vision of the future in which the well-being of the communities we serve is reflected by a healthy environment, a vibrant economy and diverse cultures working together in collaboration and cooperation.

WE ENVISION A REGION
- Characterized by thriving natural ecosystems and thriving local economies.
- Where diverse cultural values are respected and nurtured in rural, urban and tribal communities.
- Whose public institutions, nonprofit organizations, agricultural and business communities use collaborative dialogue to address pressing public policy issues and build pathways for problem solving and partnerships.

OUR MISSION
Our updated mission reflects our commitment to be a place where individuals and organizations with diverse views and values feel comfortable and empowered to work together in seeking solutions to pressing natural resource policy issues. We recognize the intrinsic relationship between healthy, sustainable ecosystems and prosperous communities, and dedicate ourselves to supporting the environmental protection and restoration work of others through our education and community outreach programs.

The mission of the William A. Grant Water & Environmental Center is to provide a welcoming and supportive place where people with diverse interests and values can learn, share knowledge and work together to create a healthy and sustainable natural environment that enhances the economic well-being of our region.

OUR HISTORY
Faced with the challenges of restoring the watershed, recovering fish runs, and better managing limited water resources, organizations in the Walla Walla Valley came together in a spirit of collaboration and cooperation to create the Walla Walla Community College William A. Grant Water & Environmental Center.

suggested improvements
Not applicable.

requested improvements

1. Build a new Aqua Culture Building
GENERAL DESCRIPTION & HISTORY
This set of structures was at one time used as a retail tractor facility and was converted to contain the Auto Mechanics Technology (moved) programs in 1998. This 22,760 s.f. building is located to the northwest of the main building cluster with a parking lot accessed from Isaacs Avenue. A 1,000 s.f. steel building to the south of the main structure houses a paint booth and a 2,400 s.f. pole building canopy occupies the area to the east of the paint booth building. Parking areas surround the north, east and west sides, with landscaping to the south.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of several pre-engineered steel structures with the exterior walls and roof covered with steel panels. The classroom portion is constructed of concrete masonry walls & EIFS, with a built-up roof. All of the building portions rest on a concrete slab-on grade.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by gas / electric rooftop package HVAC units for the classrooms and offices and gas fired or blowers in the shop areas. Plumbing systems are minimal. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, but lacks a fire sprinkler system. A fire sprinkler water service line is stubbed into the building from Isaacs Avenue for future installation. The paint booth has a fire suppression system.

INTERIOR CONSTRUCTION
The interior walls are primarily painted gypsum board on wood or steel studs. The floors are mostly exposed concrete, with vinyl composition tile used in the toilet rooms and classrooms. Classroom ceilings are composed of acoustic ceiling tiles (2' x 4') and exposed structure is in the shop area. Doors are wood with hollow metal frames.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were noticed. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
The toilet rooms near the core of the building are in compliance with ADA and State of WA accessibility codes. They do, however, show considerable signs of wear and need new finishes. The toilet rooms near the Auto Technology Shop are not in compliance with ADA or State of Washington codes. The main entry door should be provided with an auto door assist to meet ADA guidelines.

suggested improvements
1. The ceiling tiles in various locations need to be replaced. Not replaced.
2. Electrical circuits need identification. Completed.
3. The lighting should be upgraded for better energy efficiency. Completed.
4. Verify the need for a thorough duct cleaning. Not done.
5. Protective bollards should be considered for the west side of the building (curbs or wheel stops would also work). The electrical service devices on the north side should also be protected.
6. The main toilet rooms appear to need new finishes.
7. The shop toilet rooms are in need of improvements.

requested improvements
1. HVAC improvements are needed for pressure relationships and comfort.
2. Replace the roof over the automotive portion of the building. Completed.
GENERAL DESCRIPTION & HISTORY
This 25,000 s.f. building was constructed in 2003 and is situated about a quarter mile away from the main campus, on the north side of Isaacs Avenue, on a 4.1 acre property. Originally constructed to be a lumber and hardware retail store, it is now used for Turf Equipment Training (5,000 s.f.), Facility Services Shop (5,000 s.f.) and the remaining area used for Commercial Truck Driving. The building has a large parking area to the east with marking for about 40 parking stalls. The northern part of the parking area is fenced and use for storage. Drywells have been installed to handle the stormwater run-off. To the west of the building there is a gravel lot, as well as a semi-turfed area for the septic tank and drainfield. The fire sprinkler pump house is located to the southwest of the building.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a pre-engineered steel structure with the exterior walls and roof covered with steel panels over protected insulation. The building rests on a concrete slab-on grade. There is a 2,500 s.f. mezzanine above the office area which is accessed by two stairways. This mezzanine is constructed of wood subfloor on wood joists, supported by the steel framing. The storefront entry has aluminum frames with insulated glass and the overhead doors are insulated steel. Other exterior man-doors are hollow metal with hollow metal frames. The building has gutters and downspouts, exterior lighting and a flagpole.

MECHANICAL / ELECTRICAL / PLUMBING
The CDL and office areas are served by heat pumps with gas-fired make-up, the Facilities Services Shop is heated by suspended propane gas-fired radiant heat and the central shop area is unheated. Plumbing and electrical systems are all new. No leaks or malfunctions were noticeable with the existing plumbing or electrical systems. The building is served by a fire alarm system, a fire sprinkler system and a carbon monoxide detection system. The septic system occupies an area to the west of the building. Replace heat pumps. Two have been replaced.

SUGGESTED IMPROVEMENTS
1. Additional zoning is needed for cooling of the offices.

REQUESTED IMPROVEMENTS
1. An equipment wash station is needed.
indoor batting cages
(Building #22 - 200PEX)

GENERAL DESCRIPTION & HISTORY
The 5,500 s.f. Indoor Batting Cage structure was constructed in 1992. It is located at the northwest corner of the campus, adjacent to the recently built Center for Enology & Viticulture (building #23).

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story pole building structure with wood posts and trusses and metal siding and roofing. The structure is set on a concrete slab-on-grade. There appears to be very little, if any, insulation, anywhere.

MECHANICAL / ELECTRICAL / PLUMBING
The building is heated by a combination of gas fired radiant and gas fired blowers. The building does not have a fire alarm system or a fire sprinkler system. Plumbing appears to be available for future toilet room(s).

INTERIOR CONSTRUCTION
One interior partition exists which partially conceals a storage area. This is constructed of wood siding on wood studs.

AIR QUALITY & HAZARDOUS MATERIALS
No air quality problems or hazardous materials were seen to be present. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building are not in compliance with ADA and State of WA accessibility codes. There aren’t any toilet rooms in the building. There is, however, a portion of the concrete slab missing where plumbing is available for future toilet room(s).

suggested improvements

1. There aren’t any toilet rooms. If a toilet is needed, the occupant must walk to the Enology & Viticulture Center to use that building’s facilities.

2. The entry is not in compliance with ADA. A lever handle is needed at minimum.

3. This structure lends itself to becoming the extra storage, which the Enology and Viticulture Center needs.

4. The function of this facility should be located closer to the ball fields.

requested improvements

1. Relocate nearer to the ball fields.
clarkston campus
building inventory
main building
(200CLK)

CURRENT BUILDING USE
First Floor: Administration, Student Services, Student Study & Eating Areas, Kitchen, Lecture Halls, Classrooms, Faculty Offices, & Toilet Rooms, & Bookstore.
Second Floor: Student Study Area, Library, & an ITV equipped Classroom.

GENERAL DESCRIPTION & HISTORY
The Main Building was built in 1988 and contains 40,000 gross square feet of building area. Most (80% or so) of this area is on the first floor. A library addition was added to the second floor in 1995. The main parking area which serves this structure is on the south and west sides. Access to the parking lot is from Bridge Street. Remodel Science Labs.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of a steel and concrete structure, exterior masonry walls with brick veneer and trussed roofs with clay tile roofing and metal trim. A large fascia band covered with an exterior insulation and finish system (EIFS) encircles the building above the brick. The building has been designed without gutters so that rainwater drips off of the roof into landscaped areas. The building has aluminum windows, entry doors and clerestory with insulated glass. The first floor is constructed of a slab-on-grade encircled by a wood framed floor over an unvented crawl space. Mechanical piping for the heat pump system is located within this crawl space. The second floor is constructed of poured concrete on a steel deck.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a heat pump system, which is in the process of being improved. Being done now, engineering in process. The original console units would freeze-up in the winter due to the cold air entering through the fresh air intakes. These units were also noisy and disruptive for the classrooms. Circulation pumps are in good shape. The Mechanical Room is not usable due to fire sprinkler piping. All console heat pumps were replaced and re piped to smaller ones, more quiet and comfortable water to air units. 45-46 units were reduced to 12. This recirculation system is composed of PVC piping. The electrical room is located on the northern side of the building, near the lobby and appears to be in good shape with circuits identified. Power outages randomly occur but not due to any building deficiencies. The entire campus has been retrofitted to T-8 lamps and electronic ballasts. The plumbing systems include copper supply piping and PVC drain lines. The building has a fire alarm system as well as a complete fire sprinkler system.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on metal studs. The corridors and portions of the lecture hall and common areas have exposed unfinished brick masonry, which matches the exterior. The ceilings are mostly 2 x 4 suspended acoustic panels, with painted gypsum board in the toilet rooms and lecture halls. The floors are mostly carpeted, with some vinyl composition tiles and ceramic tile used in the toilet rooms. Interior doors are mostly solid core wood with hollow metal frames, both with required 1-hour fire labels. Interior windows in the corridors have the required wired glass.

AIR QUALITY & HAZARDOUS MATERIALS
No obvious hazardous materials or environmental air quality problems were observed. It would still be a good idea to periodically disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) was not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building meet the ADA and State of WA handicap accessibility codes. The two toilet rooms on the north side of the building comply with these requirements also, but the toilet rooms on the south side do not have the required handicap accessible toilet stalls. The drinking fountains are all handicap accessible.
suggested improvements

1. Some landscaping at the main entry would be useful in providing some shade on the otherwise unshaded entry. Not an issue, blinds installed instead.

2. The crawl space needs to be vented. Not required.

3. The metal trim on the roof has faded considerably. Complete re-roof two to three years ago. Good job.

4. Complete the replacement of the mechanical console heat pumps as funding allows.

5. Some ceiling tiles show discoloration due to fire sprinkler or plumbing line drips. Some replaced.

6. The 12” x 12” vinyl composition tiles in the administration area appear to be curling up at the corners. Replaced.

7. There is some discoloring of the brick in the hallways that suggest it was not sealed when it was constructed. Not an issue.

8. The “brown” carpeting appears to be worn in many places and some of the seams are torn. It appears that the entire carpeting needs to be replaced. Most carpet has been replaced. 5000 s.f. left.

9. The heat pump PVC piping system needs to be replaced with insulated copper piping. In process of being replaced in the building.

10. The gypsum board corridor walls have gouges which need to be repaired and re-painted.

11. There is evidence of roof leaks above both sets of stairs to the lecture hall balcony. Roof replaced.

12. Dust accumulates on the sloped gypsum board surfaces in the smaller lecture hall.

13. Cracks have developed in the gypsum board above the windows at the west end of the building in the computer classroom. Being reviewed.

14. Additional bike racks could be placed near the entry to encourage alternative transportation use.

15. The non-compliant toilet rooms need to be modified to meet the State of Washington handicap accessibility codes.

16. The building appears to need new paint both inside and out.

17. The fascia boards have been gouged by birds in a few places. A metal faced panel board would help to discourage this activity. Replaced.

18. Further investigation is needed to determine and correct the electrical power supply problems. Not resolved - under powered.

requested improvements

1. A system to supply emergency power is needed. The telephones and computer systems should be on an uninterruptible power source (UPS). This is due to the reasonably frequent but short duration power outages. This is no longer an issue. UPS only for elevator and emergency lights.

2. The student services area is subjected to considerable noise due to its location. This area needs to have better privacy and more space.

3. A student activities center is desired. This would contain student study areas, fitness center and recreation space. Still an issue.

4. Improvements to the telephone and data systems are desired. Done except phone which still needs improvement.

5. More storage is needed throughout the building.

6. There is congestion at the exit to the north side of the building due to the location of the toilet rooms. This area should be bigger.

7. The Interactive Television (ITV) room has the need for better acoustical separation from the adjacent HVAC room, as well as from the Library. Noise is also conducted from the ITV speakers through the building structure to the adjacent spaces. Still an issue.

8. It would be desirable to have the faculty offices be accessed from the hallways instead of the classrooms.

9. The carpeting needs to be replaced. Most has been replaced.

10. Alternatives to the fire sprinkler system in the library should be reviewed. Glycol used.

11. The periodical display and storage in the library requires a complete reconstruction due to safety concerns.
fitness center
(Building #4 - 200CFC) to be demolished

GENERAL DESCRIPTION & HISTORY
This building is a 1-story facility of approximately 1,800 GSF that was not originally constructed by the college. It appears to have been a veterinary clinic that was built in 1955. It was remodeled in 1990 after having been acquired by the college. The building is a wood-frame structure with a concrete foundation; T1-11 plywood, brick and cedar shingle exterior and a hypalon single-ply roof. The building currently houses a weight room, showers and exercise spaces.

The 1990 remodel installed new plumbing piping and fixtures throughout the building and updated some electrical distribution. Most other building systems are original or in various stages of deterioration. The worst is the hypalon roof membrane, which is badly deteriorated and has some leaks. The skylights on the roof are also badly cracked. However, replacement was funded in 2011.

There is random wear on the cedar shingle and T1-11 plywood exterior and there are code concerns with the original construction. Floor, wall and ceiling finishes throughout the building exhibit a great deal of wear and the wood doors throughout need extensive maintenance. The forced air gas furnaces have A/C coils, but the systems are older and gradually deteriorating. The main electrical service is original and very inadequate and lighting throughout is old and inefficient.

In terms of functional adequacy, this building is totally inadequate for its current use. A residential type structure has essentially been converted into a fitness and P.E. classroom building. The building is far too small for effective use, the amenities throughout are totally inadequate and dated and the interior remodels are poor. This building should not continue to be used for student activities.

This structure is located just east of the Head Start (Building #3) and shares parking with Head Start and the Child Care center (building #2).

STRUCTURE & EXTERIOR CONSTRUCTION
The building is composed of wood framed walls with wood siding, a flat roof with exterior steel supports for portions of the roof and a slab-on-grade foundation. There is a portion of the north wall that is masonry. The windows are a combination of wood framed windows with insulated glass along with a couple of openings with wood-stopped glass. The roof is topped with a single-ply membrane without insulation. Skylights have been provided for the locker rooms and men’s toilet room. The women’s toilet room has a window. New roof three years ago.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by a gas and electric HVAC split-system with the condenser located on the ground. Two electric water heaters supply water for the showers. These need a floor drain for emergency discharge. The plumbing system appears to have copper supply lines in reasonable shape. The building has a fire alarm system, but not a fire sprinkler system. End of life for HVAC.

INTERIOR CONSTRUCTION
The interior walls are primarily painted gypsum board on wood studs, with tile in the showers. The flooring is primarily carpet, with sheet vinyl in the toilet rooms and locker areas and tile in the showers. Interior ceilings are painted gypsum board and doors are painted wood. ASB painted interior. Carpet needs to be replaced. Tile is 20 years old.

AIR QUALITY & HAZARDOUS MATERIALS
Although no obvious hazardous materials or environmental air quality problems were noticed, it would be worthwhile to disassemble and inspect a portion of the ductwork to determine the current condition. Asbestos Contaminated Materials (ACM) were not immediately seen to be present.

BARRIER FREE ACCESS
The entry and exits, along with the toilet rooms and showers, fail to meet the ADA or State of WA handicap accessibility codes.
Suggested Improvements

1. The carpeting is worn in many places.
2. The windows need to be replaced, especially at the wood-stopped uninsulated glass openings.
3. The drinking fountain does not meet ADA or State of WA codes.
4. The entry and exits, along with the toilet rooms and showers, fail to meet the ADA or State of WA handicap accessibility codes.
5. The ductwork should be inspected and cleaned if needed.
6. The exterior walls need to be repainted.

Requested Improvements

1. A student services building is needed and desired. This building could incorporate a fitness area along with study rooms, etc.
clarkston health science
(200CHS)

GENERAL DESCRIPTION & HISTORY
The 8,900 s.f. Health Science Building was constructed in 2007 with a minor remodel in 2012. It is a one story building located to the east of the main building.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is slab-on-grade with framed walls with brick veneer. The roof is framed and has a combination of asphalt shingles, TPO and Kalwall. The Kalwall transition from roof to wall has been reported to leak.

MECHANICAL / ELECTRICAL / PLUMBING
The building is entirely electric resistance heat. This is the only building on both campuses with this type of heat. Electrical and plumbing systems appear to meet the requirements of the facility. There is no spare electrical capacity.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gyp board on metal studs. The ceilings are typical 2 x 4 suspended acoustical panels. The floors are carpet, tile and vinyl flooring. Interior doors are solid core wood in hollow metal frames. Windows are insulated glass units in aluminum frames.

AIR QUALITY & HAZARDOUS MATERIALS
The building is free of asbestos containing materials.

BARRIER FREE ACCESS
The building was constructed to IBC 2006 standards meeting the requirements for ADA and State of WA accessibility codes.

suggestedimprovements

1 The building houses as many nursing students as does the Walla Walla Campus, which is a much larger facility. Additional space would benefit the program that is currently offered and the curriculum of the future.

2 Analyze the Kalwall details to provide a fix for the leaks in the system.

3 Upgrade power entering the building to allow for the addition of a computer lab.

4 Kalwall roofing leaks.

5 Standing water against the building.

6 Can’t add computer lab.

7 All electric, resistance heat.

8 Finishes are good.

requestedimprovements

Not applicable.
GENERAL DESCRIPTION & HISTORY
This building is a 1-story facility of approximately 685 GSF that was not originally constructed by the college. It appears to have been a garage that was built in 1955, through records are sketchy. It was acquired by the college in the 1990’s. The building is constructed of CMU and concrete, with some tongue-and-groove wood siding and plywood and a 3-tab asphalt shingle roof.

The asphalt shingle roof is badly deteriorated, but has been funded for replacement in 2011. There is random deterioration on the exterior wood surfaces and the structural CMU exhibits extensive wear. Interior finishes, while adequate for a shop facility, show their age and the wood doors and frames are generally deteriorated. The building has no plumbing and one gas-fired unit heater, which is old and temperamental. The electrical service is barely adequate and the ceiling lights are old and totally inadequate. There is no fire alarm in the building and the windows are inefficient single-glazed units.

In terms of functional adequacy, this building is totally inadequate for its current use. Amenities to support a reasonable maintenance shop environment, such as adequate power, lighting and HVAC are totally lacking. The building is 55 years old and far too small to support the shop and storage needs of the campus. This building is inadequate for continued use. Not sufficient for the purpose.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story concrete masonry structure with a wood post and trusses, with wood framed windows and asphalt shingle roofing. The structure is set on a concrete slab-on-grade.

MECHANICAL / ELECTRICAL / PLUMBING
The building is not heated or cooled. The building does not have a fire alarm system or a fire sprinkler system. There are no toilet rooms in the building. There is electrical service which provides power for lighting and some shop equipment.

Interior Construction:
One interior partition exists which conceals a storage area. This is constructed of painted gypsum board on wood studs.

AIR QUALITY & HAZARDOUS MATERIALS
No air quality problems or hazardous materials were seen to be present. Asbestos Contaminated Materials (ACM) was not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building are not in compliance with ADA and State of WA accessibility codes.

suggested improvements
1 It appears that this structure is quite limiting and undersized for its intended use.

requested improvements
1 A larger and better shop & storage building is desired.
child care center
(200PCC)

GENERAL DESCRIPTION & HISTORY
This 3,376 sf building is a 1-story facility that was not originally constructed for the college. It appears to date to about 1975 and was constructed as a residence. It was remodeled in 1988 after being acquired by the college. The building is constructed of wood framing on a concrete foundation with a crawl space. Exterior cladding is a mix of vinyl siding, split brick and masonite. The metal and hypalon roof was installed in 1995.

Floor, wall and ceiling finishes throughout the building exhibit random wear and some deterioration. The wood doors and frames are all worn, with well worn hardware. The copper and galvanized piping is original, as are the china fixtures. New HVAC equipment was installed during the remodel, but is now 21 years old.

In terms of adequacy, this building is considered totally inadequate for a child care facility. It is essentially a converted single-family residence with mostly older amenities throughout. The interior spaces have no logical flow, are not very bright or cheery and the building is very unattractive, both inside and out.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is a single-story structure, composed of wood framed walls and roof, sloped metal roofing and a combination of slab-on-grade and vented crawl space. There is a masonry wall on the north side. There is almost a complete lack of insulation in the roof and walls. Exterior doors are wood with wood frames and the windows are a combination of metal frames with insulated glass, as well as non-insulated wood-stopped glass.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by two gas heat and electric cooling HVAC split systems. These systems are not sufficient to keep the occupants comfortable. This is largely due to the lack of insulation. The building has a fire alarm system, but not a fire sprinkler system. The plumbing and electrical components and assemblies appear to be in reasonable condition. A thorough duct cleaning would be a very good idea. New HVAC since the house was purchased. Crawl space floods. Water routed around the building to prevent flooding.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on wood studs. The floors are mostly covered by sheet vinyl and carpeting, with sheet vinyl used in the toilet rooms. Ceilings are composed primarily of painted gypsum board or exposed roof decking.

AIR QUALITY & HAZARDOUS MATERIALS
No air quality problems or hazardous materials were seen to be present. The ducting system would probably benefit from a thorough cleaning. Asbestos Contaminated Materials (ACM) was not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building are in general compliance with ADA and State of WA accessibility codes, except that there is no door assists at the main entry. There is no toilet room which meets the ADA and/or State of WA handicap accessibility codes.
suggested improvements

1. The roof leaks in several places. Some moisture is getting into the light fixture housings. The skylight flashing also leaks. Fix new roof.

2. There is no vapor barrier in the crawl spaces.

3. Railings are needed on the stairs to the playground. Fixed.

4. The dryer vent exhausts into the crawl space.

5. There is no toilet room which meets the ADA or State of Washington handicap accessibility codes. Not done.

6. The exterior siding on the gable ends needs repair and repainting.

7. The eaves should be covered with metal instead of being painted wood.

8. The outrigger beams should be cut back so that they are protected by the eaves.

9. There is no roof insulation.

10. The ductwork needs to be cleaned.

11. The uninsulated masonry allows significant conductive cooling to occur.

12. The windows all need to be replaced with more efficient ones, especially at the stopped-in glass. Half of the building is single pane, some replaced on west side.

13. Landscaping should be provided around the north and east sides of the building to take advantage of the roof water run-off and provide improvement to the entry.

14. There appears to be the early development of a sink-hole on the west side of the building within the asphalt paving. Repaired, but still sinking.

15. The hot water tank needs a floor drain for emergency discharge.

16. The building should have a fire sprinkler system.

17. Light fixtures are not energy efficient. Not replaced - incandescent.

requested improvements

1. More space is needed based on the number of children and student needs.

2. A completely new building is desired. Single building for both type kids. Passed inspection.
FAIR STREET HOUSE
(200FSH)

GENERAL DESCRIPTION & HISTORY
The original portion of this 4,400 s.f. single family residence building was constructed in 1957. The building was remodeled in 1998 for use by the Family Foundation. The circular driveway was adjusted to include parking spaces for 10 vehicles.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story, with a partial basement used for utilities and storage. The structure is composed of wood framed walls and roof, with exterior wood siding. Recent improvements to the building include asphaltic composition shingle roof, brick chimneys and wood floor framing over a crawl space. A small portion of the building (previously used as a garage) has a slab-on-grade. The basement has both poured concrete and concrete masonry walls. The windows are relatively new with vinyl frames and insulated glass. Exterior doors are solid core wood. Six year old remodel.

MECHANICAL / ELECTRICAL / PLUMBING
The building is served by three gas and electric HVAC split systems. These systems do not adequately keep the occupants comfortable largely due to differences in zoning needs. The building is served by a fire alarm system, but not a fire sprinkler system. The plumbing and electrical components and assemblies appear to be in reasonable condition except perhaps for the impending replacement of some of the old cast-iron drain pipes. Not good air flow, added onto too many times.

INTERIOR CONSTRUCTION
The interior walls are mostly painted gypsum board on wood studs. The floors are mostly covered by carpet, with sheet vinyl used in the toilet rooms and kitchen. The main entry has a brick-patterned tile floor. Ceilings are composed primarily of painted gypsum board. Carpet and VCT okay.

AIR QUALITY & HAZARDOUS MATERIALS
As with other facilities, the HVAC ductwork could use a good inspection to determine if it needs to be professionally cleaned. Asbestos Contaminated Materials (ACM) was not immediately seen to be present.

BARRIER FREE ACCESS
Entries and exits from the building, along with toilet rooms and play areas, are in general compliance with ADA and State of WA accessibility codes, except that the main entry does not have an automatic opener and one of the toilet rooms needs a grab bar at the toilet. The entry to the GED Classroom is not accessible due to the lack of unobstructed 12” strike jamb width. Railings are lacking at the ramps. Marginal compliance with widened ADA doors.

SUGGESTED IMPROVEMENTS

1. An automatic door opener should be installed on the main entry door. Not installed.

2. The main entry could use some separation from the driveway, as well as a gable cover so that it is more noticeable.

3. An additional railing is needed on the ramp in the entry area. Railings are also needed on the adjacent stairs and at the ramp located in the hallway.

4. The crawl space needs a vapor barrier.

5. The dryer appears not to vent to the exterior.

6. The wood decking in the backyard needs repairs due to rotting wood. This will eventually become a safety concern. Removed.

REQUESTED IMPROVEMENTS

1. Perimeter landscaping could help reduce extremes in heat gain through unprotected glass. It would also help improve the look of the building.

2. Carpeting in the entry area would help reduce conductive heat loss through the floor.
head start building
to be demolished

GENERAL DESCRIPTION & HISTORY
This building is actually owned by Head Start Services, with the land leased to them by Walla Walla Community College and the State of Washington. The structure was built in 1995 and is located east of the Child Care Center, adjacent to the fenced playground. Ground lease.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story, triple-wide modular building. The structure is composed of wood framed walls and roof with exterior wood siding. The building has an asphaltic composition shingle roof and slab-on-grade floor.

MECHANICAL / ELECTRICAL / PLUMBING
The building appears to be served by a multi-zone gas / electric HVAC split system. Other electrical & plumbing information is unavailable due to lack of interior access.

INTERIOR CONSTRUCTION
Unknown.

AIR QUALITY & HAZARDOUS MATERIALS
Unknown.

BARRIER FREE ACCESS
Unknown.

suggested improvements
Not applicable

requested improvements
Not applicable.
stable storage building (200CST) to be demolished

GENERAL DESCRIPTION & HISTORY
This building is a 1-story facility that was not originally constructed by the college. It appears to date to about 1955. The building is constructed of wood framing on a concrete slab, with tongue-and-groove horizontal wood siding and metal roof panels.

The wood framing exhibits general deterioration and there are some structural concerns. The siding is fairly well deteriorated. Only the metal roof has some integrity. There are no interior finishes other than the structural components. All doors are badly deteriorated. The only building infrastructure is an original 200 amp panel. There is no lighting.

In sum, this building is deteriorating and marginally adequate for use as a storage facility. It is really not cost-effective to repair or maintain.

STRUCTURE & EXTERIOR CONSTRUCTION
The building is single-story pole building structure with wood posts and trusses, wood siding, and metal roofing. The structure is set on a concrete foundation. There is a dirt floor within the building.

MECHANICAL / ELECTRICAL / PLUMBING
The building is without heating, cooling, plumbing, or electricity.

INTERIOR CONSTRUCTION
The interior is exposed wood studs and boards.

AIR QUALITY & HAZARDOUS MATERIALS
Ventilation should be increased to offset the moisture which enters the structure through the dirt floor. Asbestos Contaminated Materials (ACM) was not immediately seen to be present...

BARRIER FREE ACCESS
Entries and exits from the building are not in compliance with ADA and State of WA accessibility codes, although it is not important in this building type. Widened ADA doors.

suggested improvements
1. The building lacks a concrete floor.
2. The building needs a considerable amount of work relating to the siding.
3. Additional ventilation is needed.

requested improvements
1. Staff would prefer a heated and cooled shop and storage structure with a concrete floor, electrical power, phone, insulated and finished walls and roof.
Acknowledgements

WWCC’s Master Facility plan has been developed with input and recommendations from the following list of individuals. These participants have been, and will continue to be, an influential part of the success of Walla Walla Community College. Their involvement in providing vital information, and insight into the history and purpose of the College, as well as the vision for the future, fostered an open atmosphere for creative planning.

Board of Trustees: Darcey Fugman-Small (Chair) Don McQuary (Vice-Chair) Kris Klaveano Miquel Sanchez Dr. Roland Schirman

President: Dr. Steven VanAusdle

Vice Presidents: Davina Fogg, V.P. Financial Services Jim Peterson, V.P. Administrative Services Dr. Marleen Ramsey, V.P. Instruction Wendy Samitore, V.P. Student Services Shane Loper, Director, Facilities & Capital

This Master Plan is a living document and is representative of the needs and expectations at the time it was prepared. It endeavors to be accurate and concise in assessments, while providing practical and visionary direction for the future of Walla Walla Community College.

Assistance and expertise was provided by the following:

City of Walla Walla Planning Dept.: Jon Maland
City of Walla Walla Fire Department: Tim Thompson

Helpful advice and comments were provided by the following administrators, teachers, and staff:

Clarkston Campus: Dr. Janet Danley Carol Bennett Philip Casali Jennifer Dejean Devon Gustafson Miguel Inzunza Dr. Chad Mittenberger

This plan was also influenced by input received during a number of listening sessions where the strategic plan was being presented.